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Finding new compounds and their crystal structures is an essential step to new materials
discoveries. We demonstrate how this search can be accelerated using a combination of machine
learning techniques andhigh-throughput ab initio computations.Using a probabilisticmodel built on
an experimental crystal structure database, novel compositions that are most likely to form a
compound, and their most-probable crystal structures, are identified and tested for stability by
ab initio computations. We performed such a large-scale search for new ternary oxides, discovering
209 new compounds with a limited computational budget. A list of these predicted compounds is
provided, and we discuss the chemistries in which high discovery rates can be expected.

1. Introduction

New compounds often form the basis for new materials
discoveries. For example, recent advances in high-critical-
temperature (high-Tc) superconductor or thermoelectric
materials find their roots in the discovery of previously
unknown crystalline phases.1,2 It is of scientific and techno-
logical interest toknowhowmanyundiscovered compounds
nature still has in store, aswell as their compositions.Density
functional theory (DFT) and its extensions3-5 have been
shown to model the ground-state and finite temperature
behavior for a wide variety of compounds accurately. In
particular, phase stability has been shown to be efficiently
and accurately accessible through DFT computations in
many different chemistries.6-13

As noted by Woodley et al., the current challenge in
computationally predicting compounds is not the computa-
tion, but what to calculate.14 Simply put, one must decide
which chemical compositions likely form compounds and

warrant investigation, and one must have a method to
suggest possible crystal structures of the compound. In this
paper, we use large-scale ab initio calculations, together with
machine learning techniques, to explore the ternary oxide
chemical space in search of missing compounds. Several
hundreds of potential new compounds and their crystal
structure are identified and provided in the online informa-
tion. We believe that these types of knowledge-driven high-
throughput computational techniques can form the basis of
accelerated materials discovery.
Algorithms for crystal structure prediction are typically

based on optimization of the relevant thermodynamic po-
tential in the space of atomic coordinates, using techniques
such as genetic algorithms15-18 or simulated annealing.19-21

Although successful in several focused cases of compound
prediction, coordinate-based optimization techniques are
simply too computationally costly for tasks involving more
than a handful of candidate chemical compositions. If,
instead, one is searching in the space of both chemical
composition and structure, an approach for deciding which
compositions are likely to yield newcompounds is needed, in
addition to a fast structure prediction method.
In this paper, we use a recently introduced method

based on data mining to search across all ternary oxides
for new compounds.22 Broadly speaking, the technique
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uses a machine learning approach to extract the “chemi-
cal rules” that govern structure selection from an experi-
mental database of crystal structure information. Using
this learned information, it suggests likely compound
forming compositions and candidate structures in new
systems. By combining this with an accurate energy
model, such as DFT, to sort through the candidate list,
we effectively predict several hundred new ternary oxide
compounds.

2. Methodology

2.1. Compound and Structure Prediction Procedure.

We briefly present the method here. Let the variable xci
indicate what crystal structure is present at a given com-
position ci. For example, if ci represents the composition
AB2C4, then xci may have values such as spinel, olivine,
etc. The condition “xci=nostructure” indicates the absence
of a compound at the given composition. In addition,
variables representing the system’s constituents (e.g., Ei=
Ag, Cu, Na, etc.) are defined. With these definitions, any
chemical system of C constituents and n compositions can
be representedbyavectorXB=(xc1,xc2, ...,xcn,xE1

,xE2
, ...,xEc

),
where the composition space is discretized using n composi-
tion bins.
The probability density p(XB) is the essential information

that we require, because it provides information regarding
what crystal structures tend to coexist in a chemical system.
Based on the available information at known compositions
in a system, this probability density can be used to assess if
another composition (xcj) is likely to be compound-forming.
Mathematically, this is evaluated by computing the prob-
ability of forming a compound:

pcompoundðxcj Þ ¼ 1- pðxcj ¼ nostructurejxc1 , xc2 , ..., xcj- 1
,

xcjþ 1
, ..., xcn , ..., xE1

, xE2
, ..., xEC

Þ ð1Þ

In addition, when a composition xcj of interest is
targeted, the probability density can be used to suggest
the most likely crystal structures by evaluating

pðxcj jxc1 , xc2 , ... , xcj- 1
, xcjþ 1

, ... , xcn , ... ,xE1
, xE2

, ... , xEC
Þ
ð2Þ

For the different values of xcj (i.e., for the different
crystal structure prototypes known at this composition),
a list of the l most likely crystal structure candidates can
be established. These candidate crystal structures can
then be tested for stability by an accurate energy model
such as DFT. The procedure for compound discovery is
summarized in Figure 1.
2.2. Training and Testing of the Ternary Oxide Prob-

abilistic Model. To search for new ternary oxides, we
trained the probabilistic model presented above on the
oxide experimental data available in the Inorganic Crys-
tal Structure Database (ICSD).23 The ICSD is the most

complete crystal structure database for oxides. It contains
∼5000 unique ternary oxide compounds distributed
across 1581 chemical systems.
The 2006 version of the ICSDwas searched for duplicate

compounds, using a robust affine mapping technique.24,25

Two entries are considered to represent the same compound
if their crystal structures have the same space group and can

Figure 1. Data-mining driven compound discovery procedure. A prob-
abilistic model is built from a crystal structure database. In any system
A-B-C, this model is used to identify the new compositions most likely
to form a compound (denoted by the red dots). For those compositions,
themost likely crystal structures are proposedusing the sameprobabilistic
model. These structure candidates are then tested for stability, using an
accurate energy model, such as DFT.

(23) ICSD, Inorganic Crystal Structure Database; Fachinformationszentrum
Karlsruhe: Karlsruhe, Germany, 2006.
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be transformed onto each other through an affine mapping.
After this analysis, 616 unique binary and 4747 ternary
oxides compounds were identified. These compounds were
grouped by crystal structure prototype, using the same affine
mapping technique.
Composition bins were binned into the 30 most com-

mon binary compositions and the 120 most common
ternary compositions. Any compound not fitting per-
fectly in one of these bins was binned in the closest
composition bin. Adding the 3 element variables, a total
of 183 variables was used in the probability model.
The probability function p(XB) is a complex multivari-

able function that must be approximated, for all practical
purposes. In this work, we approximate it using a cumu-
lant expansion truncated after the pair terms, following
Fischer et al.:22

pðXÞ � 1

Z

Y

i

pðxiÞ
Y

j<k

pðxi, xjÞ
pðxiÞpðxjÞ ð3Þ

The parameters to be estimated from the available data are
the point {p(xi)} and pair {p(xi,xj)} terms. These parameters
are estimated using a Bayesian estimation approach and a
Dirichlet prior, as presented in Fischer et al.22

During predictions, only compositions allowed by the
possible knownoxidation states of the elementwere allowed.
We tested the compound discovery procedure outlined

in the previous section using a classic cross-validation
approach whereby some information is removed from the
database and the quality of the predictions on this
removed information is evaluated. This cross-validation
procedure confirmed that our approach is predictive. We
find the correct crystal structure 95% of the time, using
5-20 DFT calculations (see Supporting Information).
2.3. Ab Initio Density Functional Theory Computation

Parameters. All ab initio computations have been per-
formed using the Vienna ab initio Simulation package
(VASP)26within the projector augmented-wave approach,27

using the generalized gradient exchange and correla-
tion functional parametrized by Perdew, Burke, and
Ernzerhof.28 We used a U parameter29 for some of the
transition metals (V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo,
Ag, Ta, W). This U parameter was fitted following
Wang’smethod30 and using binary oxide enthalpy forma-
tion energies from the Kubachewski tables.31 The energy
cutoff was 30% higher than the maximal energy cutoff
specified by the pseudopotential. For oxides, oxygen has
the maximal specified energy cutoff of 400 meV, con-
straining all oxides run to be performed with a cutoff
energy of 520 meV.

A k-point density of at least 500/(number of atoms in
unit cell) k-points was used for all the Brillouin integra-
tions. The Monkhorst-Pack method was used to obtain
k-points distributed asmuch as possible uniformly.32AΓ-
centered grid was used for hexagonal cells.
All computations were performed with spin polariza-

tion. All magnetic moments were initialized in a ferro-
magnetic configuration with high spin for the elements
Sc, Ti, V, Cr,Mn, Fe, Ni, Cu, Zn, Y, Zr, Nb,Mo, Ag, Cd,
La, Hf, Ta, W, Pt, Hg, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho,
Er, Tm, Yb, Lu, and low spin for all others. Two runs
were performed with Co: one initialized high spin and the
other initialized low spin. Only the computation with the
lowest energy was considered.
Relaxation was performed using the AFLOW software.9

The first relaxationattemptwasperformedusingamixtureof
RMM-DIIS33 andDavidson algorithm34 as the diagonaliza-
tion scheme. If the first attemptdidnot converge, a second try
was performed using only the Davidson algorithm, which is
known tobe slowerbutmore stable.Mixingparameterswere
also modified for this second attempt.
Using these parameters, all element, binary, and ternary

compounds present in the ICSD database were computed.
The oxide compounds having partial occupancies were
related to an ordered structure at the same or close composi-
tion using an enumeration technique similar to the one
proposed by Hart et al.35 and picking the structure with
the lowest electrostatic energy, as determined via Ewald
summation.36

In this work, any crystal structure containing more
than 100 atoms in its unit cell was not considered for
computation, because of resource limitations.

3. Results and Discussion

Using this probabilistic approach, we searched for new
compounds in 2211A-B-O systems, withA andB taken
from the following pool of elements: H, Li, Be, B, C,N, F,
Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn,Ga,Ge,As, Se, Br,Rb, Sr,Y, Zr,Nb,Mo,Ag,
Cd, In, Sn, Sb, Te, I, Cs, Ba, La,Hf, Ta,W, Pt,Hg, Tl, Pb,
Bi, Ce, Pr,Nd, Sm, Eu,Gd,Dy,Ho, Er, Tm,Yb, or Lu. In
these systems, we searched for compositions where no
ternary oxide is given in the ICSD but for which the
probability for forming a compound (eq 1) is higher than
a certain threshold. This threshold represents a compro-
mise between the computational budget required and the
rate of discovery expected. The value of the threshold we
chose suggested 1261 possible compositions and exhib-
ited a 45% true positive rate during cross-validation (see
the Supporting Information). At these selected composi-
tions, the most likely crystal structures were determined
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from the data-mined probability density using eq 2. The
number of suggested crystal structures at each composi-
tion corresponds to the list length that gave 95%accuracy
in cross-validation. This corresponds to a total of 5546
crystal structures whose energy needed to be calculated
with ab initio DFT. All existing binary, ternary, and
elemental structures in the ICSD were also calculated so
that relative phase stability can be assessed. Hence, a new
structure is stable when its energy is lower than any
combination of energies of compounds in the system
weighted to the same composition.
From the 1261 compositions suggested by the model,

the ab initio computations confirmed 355 to be stable
against every compound known in the ICSD. This repre-
sents one new stable compound predicted per 16 DFT
computations. A fully exhaustive search (i.e., computing
all possible structure prototypes in any composition bin)
in the 2211 A-B-O systems of interest would be prohi-
bitive and require 5 428 287 computations. Even restrict-
ing such an exhaustive search to the crystal structure
prototypes present in the selected 1261 compositions bins
would require substantially more computations (183 007)
than the 5546 needed, while fully using the machine
learned model.
While these predictions are made for chemical compo-

sitions that have no compounds in the ICSD database, we
compared them to another major compound database
available: the PDF4þ database from the International
Centre for Diffraction Data (ICDD).37 This database
also contains compounds for which only a composition
and a powder X-ray diffraction (XRD) pattern are avail-
able but no structural information. Sixty four of the 355
compositions at whichwe predicted new compounds have
a powder diffraction pattern in the PDF4þ database but
do not have any crystal structure available. For those, our
findings complete the current information available by
assigning a stable crystal structure to the compound. In
addition, 146 other predictions involve compositions
presenting structural information in the PDF4þ database
(but not in the ICSD). A careful comparison of these 146
predicted crystal structures to the PDF4þ entries re-
vealed that only six of our predicted results did not match
the structural data present in their corresponding PDF4þ
entries (see the Supporting Information). Since no infor-
mation at all from the PDF4þ database was used to train
our model, this high success rate supports our method
and strengthens the confidence in the rest of our predic-
tions (209 compounds).
The different chemistries over which these new com-

pounds are distributed can be analyzed. Figure 2 indicates
the number of new compounds found for every A-B-O
system, where A is plotted on the x-axis and B on the
y-axis. The elements are ordered according to their
Mendeleev number.38 This ordering allows us to spot
the different chemical classes in which new compounds

have been found directly. Figure 2 indicates that the
predictions spanmany different chemistries.Most striking
is the absence of any new compounds in mixtures of rare-
earth elements. The difficulty involved in forming energe-
tically favorable ternary oxides that contain two rare-earth
elements relates the important electrostatic component to
the phase stability in oxides. Indeed,manyof the rare-earth
compounds usually exhibit a þ3 oxidation state and
combining isovalent cations rarely leads to the formation
of highly stable compounds. Rather, solid solution mix-
ing tends to be more common. Supporting that analysis is
the fact that the only prediction wemade in this chemistry
is a La2Pr2O7 compound, which combined La3þ and Pr4þ

ions. Pr, along with Ce and Tb, are the only rare-earth
elements that exhibit a þ4 oxidation state in oxides.
A similar electrostatic effect can explain the absence of

any predictions in the alkali-alkali and alkali-earth-
alkali-earth corner. It is interesting to note that the ICSD

also shows a lack of compounds in these two regions. The

known ICSD compounds in these spaces are mostly

disordered solid solution structures that have been stabi-

lized by entropic mixing effects.
The lastmajor regionwithout predictions is situated in the

upper right corner ofFigure 2 and concerns the oxides of two
main group elements. Only 3 successes from 40 suggested
compositionswereobtained in this chemical space.However,
analysis of the cross-validation results did not show any
evidence,which suggests a systematic failure of our approach
in this region (see the Supporting Information). The diffi-
culty of finding newmain group-main group compounds is
probably an indicator that almost all ternary oxides have
already been discovered in this chemical space.
Many of the new compounds contain at least one rare-

earth element mixed with any of the five other categories
of elements (217 among the 355 predicted compounds).
Indeed, rare-earth chemistry has not been explored as

Figure 2. Distribution of the new compounds across chemical classes.
This plot indicates the number of new compound discovered in this work
for any A-B-O system, with A along the x-axis and B along the y-axis.
The elements are ordered according to their Mendeleev number.

(37) PDF4þ, Powder Diffraction File; International Centre for Diffraction
Data: Newtown Square, PA, 2008.

(38) Pettifor, D. G. J. Phys. C: Solid State Phys. 1986, 19, 285–313.
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much as other chemistries; therefore, it presents more
opportunities for our approach to identify unknown
compositions and their crystal structures. However, rare-
earth compounds attract great scientific and techno-
logical interest, because of their unique catalytic, optical,
or magnetic properties.39 Among those, it is interesting to
see that our algorithm picked up the correct La2Zr2O7

structure for the La2Bi2O7 compound present in the
PDF4þ database.40 Bi and Zr do not have very close
chemical identity and a direct substitution from Zr to Bi
would not be obvious to the chemist’s intuition.
Another singular chemistry for which we predict many

new compounds is the heavy-alkali chemistry (Rb and
Cs). Indeed, 56 of the 355 compounds contain one of these
two elements. Here again, the fact that these two elements
have been much less studied than, for instance, the lighter
alkali elements opened up the possible discovery of many
new compounds. Among these, it is striking to find many
Co4þ compounds. While Co4þ requires very strong oxi-
dation conditions in most chemistries, our analysis of the
oxygen chemical potential in which the compound is
stable (see the Supporting Information) indicates that it
may bemuch easier to formCo4þwhen combinedwithCs
or Rb. For instance, one should be able to synthesize
predicted compounds such as Co2Cs6O7, Co2Rb6O7, and
CoRb2O3 under relatively mild oxidizing conditions. The
stabilizing effect of heavy alkali toward the high oxida-
tion state of a transition metal is a chemical rule that is
known by some chemists and has been reported, for
instance, by O’Keefe.41 In addition, one of those three
compositions (CoRb2O3) is linked to a powder diffrac-
tion pattern (without exact structural information) in the
PDF4þ database. Comparison between this PDF4þ
pattern and that simulated from our prediction shows
good agreement (see the Supporting Information).
Although searching for new compounds obviously results

in a higher discovery rate for less-common elements, our
search also identified compounds inwell-studied chemistries.
Many of these new compounds, while exhibiting common
elements, contain them in an oxidation state requiring such
strongly oxidizing or reducing conditions that it could be
possible that their synthesis was never attempted under
favorable conditions. For instance, while it is surprising to
make a prediction in a rather common chemical system such
Ni-Zn-O, the predicted compound (a Ni3þ-containing
Ni2ZnO4 spinel) requires amore oxidizing environment than
the Ni2þ-containing NiO-ZnO solid solution present in the
ICSD.42

Similarly, while many SnO2-TiO2 solid solutions are in
the ICSD, there is no known Sn2þ-Ti4þ compound. Our
analysis predicts aSnTiO3 ilmenite that is stable in a reducing
environment. This SnTiO3 ilmenite prediction is of techno-

logical interest, because SnTiO3 perovskite has been pre-
dicted through ab initio computation to be a good candidate
lead-free ferroelectric material.43 However, our work shows
that the ilmenite structure is more stable than the perovskite
structure, by a very significant 130 meV/atom.
We should emphasize that we also found compounds

for which the extreme synthesis conditions, or the less-
common element argument, cannot apply to rationalize
their presence in our list of novel predictions. For exam-
ple, we predict two new compounds in the Mg-Mn-O
system: MgMnO3 and Mg2Mn3O8, both of which are
compounds that have the much more commonþ4 oxida-
tion state forMn. The PDF4þ database actually contains
a powder diffraction pattern for MgMnO3. Comparison
of the powder diffraction pattern of our predicted struc-
ture to that presented in this database shows a reasonable
match and confirms our prediction of an ilmenite struc-
ture (see the Supporting Information). On the other hand,
the Mg2Mn3O8 compound is totally unknown from
literature and is predicted to crystallize in a very uncom-
mon structure, exhibited by Co2Mn3O8.

44 This illustrates
how our method can select unusual or less-common
structures and go beyond the “trying the usual suspect”
approach often used in crystal structure prediction.
All of the compounds predicted have been analyzed

separately, and a full description (including thermody-
namic data, CIF file data, and remarks) is available in the
Supporting Information and on the Internet at http://
ceder.mit.edu/ternaryoxides. It is our belief that researchers
could benefit from access to theoretically predicted com-
pounds, in addition to the standard crystal structure and
powder diffraction experimental database.
While our approach is fast and efficient for discovering

new compounds, it has limitations. It is possible that we
missed a true ground state, because of the absence of its
structure prototype from our database. By definition, our
method cannot predict a compound crystallizing in an
unknown structure prototype. However, finding a new
stable compound through our method, while not guar-
anteeing to find the true ground state, indicates that, in
any case, there is a stable unknown compound lying in
this chemical system.

4. Conclusion

In summary, we have used a combination of data mining
and first principles computations to look for undiscovered
compound forming compositions in AxByOz systems and
predicted their structure. The 355 new compounds suggested
were obtained within ∼55 days of computing on 400 Intel
Xeon 5140 2.33Ghz cores, indicating the efficiency bywhich
new compounds can be discovered computationally. One
can compare this to the experimental discovery rate as
measured by the number of new entries each year in the
ICSD,which has been averaging about 100per year since the(39) Scarel, G.; Svane, A.; Fanciulli, M. In Scientific and Technological

Issues Related to Rare Earth Oxides: An Introduction; Springer:
Berlin, 2007; Vol. 106, pp 1-14.

(40) Uma, S.; Gopalakrishnan, J. J. Solid State Chem. 1993, 105,
595–598.
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(42) Kedesky, H.; Drukalsky, A. J. Am. Chem. Soc. 1954, 76, 5941–

5946.

(43) Matar, S.; Baraille, I.; Subramanian, M. Chem. Phys. 2009, 355,
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1980s (see the Supporting Information). Hence, we believe
that our proposed approach represents an exciting opportu-
nity for novel materials discovery by theorists and experi-
mentalists alike.
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