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ABSTRACT: Li2ZrCl6 (LZC) is a promising solid-state electrolyte due to its
affordability, moisture stability, and high ionic conductivity. We computation-
ally investigate the role of cation disorder in LZC and its effect on Li-ion
transport by integrating thermodynamic and kinetic modeling. The results
demonstrate that fast Li-ion conductivity requires Li-vacancy disorder, which is
dependent on the degree of Zr disorder. The high temperature required to form
equilibrium Zr disorder precludes any equilibrium synthesis processes for
achieving fast Li-ion conductivity, rationalizing why only nonequilibrium
synthesis methods, such as ball-milling, lead to good conductivity. Our
simulations show that Zr disorder lowers the Li/vacancy order−disorder
transition temperature, which is necessary for creating high Li diffusivity at
room temperature. These insights raise a challenge for the large-scale
production of these materials and the potential for long-term stability of
their properties.

High-Li-ion-conductivity solid electrolytes are essential
for realizing all-solid-state batteries (ASSBs), which
offer the potential for increased volumetric energy

density and improved safety compared to conventional liquid-
electrolyte-based batteries.1−3 Chloride-based Li-ion solid
electrolytes, with the general formula LixMyCl6, where M
represents a transition metal and in which Cl anions form a
close-packed framework, have become of interest as catholytes
in ASSBs.4−10 Many of these electrolytes exhibit high room-
temperature (RT) Li-ion conductivity (>1 mS/cm), good
interfacial stability with cathode materials, and high oxidation
stability,5,9,11−13 consistent with early theory predictions.14

Significant challenges still exist before these materials can be
commercialized in practical cells. Some of the halide
conductors contain low-abundance metals (e.g., Sc/Y/Tb/
Lu). In addition, many of the interesting halides are unstable in
ambient conditions and their ionic conductivity significantly
degrades by exposure to moisture.4,15 Recently, the Zr-based
compounds (e.g., Li2ZrCl6, LZC) and their doped variants
have demonstrated the potential to overcome these chal-
lenges.7,16−22 LZC exhibits distinct polymorphism with its
structure depending on the synthesis method, as summarized
in Figure 1a. The mechanochemical synthesis produces αh-
LZC (hexagonal close-packed anions, hcp), whereas the βc-
LZC (cubic close-packed anions, ccp) can form by annealing
αh-LZC at temperatures above 260 °C. While the ball-milled
αh-LZC exhibits RT Li-ion conductivity of approximately 0.8
mS/cm,16 the annealed LZC in either the α- or β-phase

displays significantly lower RT Li-ionconductivity.16 This has
led to the hypothesis that some disorder is critical to achieving
high ionic conductivity. Mechanochemical ball-milling as a
nonequilibrium synthesis method is capable of inducing high-
energy cation-disordered configurations.23,24 Schlem et al.25

demonstrated that in Li3YCl6 and Li3ErCl6 mechanochemical
synthesis induces cation defects by creating disorder on the
sites occupied by Y/Er and that this results in a reduced
activation energy and enhanced ionic conductivity. Using
molecular dynamics simulations, Wang et al.26 revealed that
the Li sublattice disorders above Tc = 425 K in Li3YCl6 and
that the associated broadening of the Li site energies creates
fast Li-ion diffusion. Other approaches such as introducing
stacking faults27 and tuning Li/metal stoichiometry to create
percolation pathways28,29 have also been proven to enhance Li-
ion conductivity.
In this study, we seek to explain the correlation among the

synthesis route, cation disorder, and ion transport in LZC
systems through ab initio modeling. We demonstrate that, in
equilibrium, Li and Zr disorder occur at very different
temperatures. Our results suggest that facile Li disorder only
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emerges at RT in the presence of Zr disorder but that
equilibrium Zr disorder only occurs at very high temperatures.
In the low-temperature equilibrium states in which Zr is well-
ordered, Li/vacancy intersite exchanges are thermodynamically
limited, leading to very low conductivity. The finding that at
low-temperature Li disorder is driven by Zr disorder is further
confirmed by molecular dynamics simulations, in which we
find a significant improvement in Li ionic diffusivity with the
presence of Zr disorder. Our investigation demonstrates that
Zr disorder is essential to achieve high Li conductivity but
cannot likely be achieved through thermal equilibrium
synthesis routes, thereby explaining why extensive ball-milling
is required for these materials. We believe this to be a challenge
for the large-scale production of these materials as well as a
potential problem for the long-term stability of their properties.
To investigate the thermodynamics of cation disorder in

LZCs, we conducted cluster expansion (CE) Monte Carlo
(MC) simulations to sample the average and fluctuation of the
configurational energy at finite temperatures. The CE is a
mathematically rigorous approach to expanding the energy of a
system in terms of configurational variables (site occupancies),
which has been used to study the configurational thermody-
namics of materials in which sites can be occupied by multiple
cations30−32 and has been applied to study many battery
materials with cation disorder, including cathodes33,34 and
solid-state electrolytes,35,36 as well as for disorder in metallic
systems.37 The CE model for α/β-LZC was constructed based
on the hcp/fcc primitive cell as shown in Figure 1b,c. The
expansion coefficients in the CE were fitted to the energies of
various cation configurations calculated using density func-
tional theory (DFT), with the standard methodological details
provided in the Supporting Information. The ground states
(GS) of both α- and β-LZC were found to exhibit a layered
structure, as shown in Figure 1d,e. Monte Carlo (MC)
sampling of the CE energies can be used to thermally
equilibrate a system at finite temperatures. We started from the
ground-state structures and heated them from 0 to 5000 K.
Figure 2a presents the average potential energy above the
ground state ΔEpot = E(Teff) − EGS, where Teff is the effective
temperature used in MC simulations at which equilibrium
atomic configurations were sampled. Figure 2b shows the heat
capacity Cv = σ2(E)/kBT2, where the green/orange dots

represent α/β-LZC, respectively. The two significant increases
in ΔEpot accompanied by peak signals in Cv for both α/β-LZC
indicate order−disorder phase transitions. The heat capacity
peak near 500 K is associated exclusively with Li/vacancy
disorder, and no Zr disorder is detected in the MC structures
in this temperature range. The subsequent increase in ΔEpot
and corresponding peak in Cv near 4000 K correspond to the
Zr order−disorder phase transition, which is marked by the
green/orange shaded region in Figure 2. Such a high
temperature suggests that there is no spontaneous Zr disorder
from thermal fluctuations at the typical temperatures accessible
during solid-state synthesis. Given these results, it is clear that
only high-energy, nonequilibrium synthesis approaches such as
mechanochemical ball-milling can achieve the disordered state.
To evaluate how the Li/vacancy site distribution is affected

by the presence of Zr disorder, we investigated the energy
sampled by the Li/vacancy configurations in an MC simulation
when Zr ordering is fixed to that obtained at elevated
temperatures. The Zr configuration sampled from MC at Teff =
3050 K shows intersite exchange between Li/Zr for both α-
and β-LZC, while the Zr configuration above the order−
disorder transition (e.g., Teff = 5000 K) corresponds to
complete cation disorder on the cation sublattices in the hcp
and fcc framework (Figure S2). Figure 3a,b shows the average
configurational energy, {ET}, sampled by the Li/vacancy
degrees of freedom conditioned on various fixed Zr states of
disorder (represented by Teff, which is the temperature at
which the Zr configurations were obtained). The x-axis
represents the temperature at which the Li/vacancy energy
was sampled in MC, and the y-axis shows the average energy
difference above the 0 K configuration. The Li/vacancy
energetics for both α- and β-LZC with Teff = 50 and 1050 K
are almost the same, indicating no Zr disorder occurs in this
temperature range. When Zr is ordered well (Teff = 50 K or Teff
= 1050 K), the Li/vacancy disorder initiates at approximately
500 K as indicated by the characteristic potential-energy
increase.
For the structures with a high degree of Zr disorder (e.g., Teff

= 5000 K), Li already samples higher-energy configurations at
low temperatures (200 to 300 K), and no distinct order−
disorder transition is observed, consistent with findings in
other materials with coupled disorder.38 This observation

Figure 1. (a) A summary of the synthesis paths and ionic conductivities of LZCs based on the experimental results reported by Wang et al.16

(b,c) The primitive cells used for cluster expansion models of α-LZC (hcp) and β-LZC (fcc). The green, orange, and white spheres represent
the cation sites that can be occupied by Li/Zr/vacancies, respectively. The gray sphere represents the anion site with Cl occupancy. The
ground-state structures of (d) α-LZC and (e) β-LZC.
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indicates that Li/vacancy configurational disorder at RT is
made possible by the Zr disorder. An analysis of Li intersite
exchange energy (ΔEsite) is provided in Figure S3, which finds
that the presence of Zr disorder broadens the site energy
distribution and increases the density of low ΔEsite.
To obtain quantitative measures of Li diffusivity as a

function of Zr disorder, we employed machine learning
interatomic potential (MLIP) to perform molecular dynamics
(MD) simulations and investigate Li transport kinetics. By
simulation of the atomic trajectories, MD is typically used to
obtain conductivities in fast-ion conductors through the
Green−Kubo formalism. The presence of cation disorder
and slow transport kinetics near RT necessitate large-scale,
long-time simulations. MLIP is computationally efficient while
maintaining close to ab initio accuracy, making it well-suited
for this purpose. The MLIP was fine-tuned from the pretrained
CHGNet using energies, interatomic forces, and stresses
obtained from DFT calculations of various atomic config-
urations (see Supporting Information for model details).39,40

The Li diffusivity is estimated from the mean-squared
displacement over simulation time via D = ∑i

N [Δr(⃗t)]2/
(6Nt) following the empirical error estimation scheme
proposed by He et al.,41 where r(⃗t) represents the displace-
ment of the i-th diffusive atom and t denotes the simulation
time. The activation energy is computed by fitting the
logarithm of diffusivity vs the inverse of temperature. In the
MD simulations, structures with partial Zr disorder were
obtained from MC simulations at Teff = 0/3050/5000 K, and
Zr ions do not migrate, so Li diffusion can be studied for a
fixed Zr disorder.
Figure 3c,d displays the Li diffusivities at temperatures from

T = 300 to 700 K in these structures. The ground-state
structures (no Zr disorder) are represented by red squares,
structures with partial Zr disorder (Teff = 3050 K) are
represented by orange dots, and structures beyond the Zr
order−disorder transition (Teff = 5000 K) are represented by
green triangles. The dashed lines in Figure 3c,d are fits to the
activation energies using the diffusivities obtained from the
low-temperature range (<500 K). The unfilled squares
represent diffusivities for which a limited amount of Li
hopping is observed in the MD simulations, leading to high
error bars on the diffusivity (see Figure 4a,d as examples).
For structures beyond the Zr order−disorder transition (Teff

= 5000 K, green triangles), the dashed line fit from the low-

temperature region closely aligns with the high-temperature
simulated diffusivities (500 to 800 K), which indicates that the
diffusion coefficient satisfies a simple Arrhenius law over the
full temperature region. In contrast, structures without Zr
disorder (ground state, red squares) exhibit marked non-
Arrhenius behavior for both α- and β-LZC, as they show no
overlap between the dashed lines and high-temperature
diffusivities. The steep slope of these red dashed lines indicates
high activation energies near RT (Ea = 0.97 ± 0.08 eV for α-
LZC and Ea = 0.68 ± 0.04 eV for β-LZC), significantly larger
than those determined by nudged-elastic band (NEB)
calculations within the hcp and ccp halide framework.12 The
analysis derived from MD simulations aligns closely with the
thermodynamic data. The non-Arrhenius behavior of Li
transport in the structures with ground-state Zr ordering
arises from the order−disorder transition of Li and vacancies
near 500 K (see blue lines in Figure 3a,b), whereas such a
transition is not observed for Zr-disordered structures.
The α- and β-LZC polymorphs show distinct behavior when

Zr is partially disordered (Teff = 3050 K, orange dots in Figure
3c,d). The diffusivity of Li in α-LZC with Teff = 3050 K has an
activation energy Ea = 0.42 ± 0.02 eV, which is between those
of the ground-state ordering and fully disordered Zr. In
contrast, for β-LZC, Li diffusion for partial Zr disorder (Teff =
3050 K) occurs with a similar activation energy than in the
highly disordered case (Ea = 0.31 ± 0.02 eV), suggesting that
the ccp structures are conducive to Li diffusion even when Zr
is only partially disordered. We find that the difference of
activation energy in α- and β-LZC is also reflected in the
energy landscape, with α-LZC showing some flattening of the
energy landscape (orange line in Figure 3a). This mirrors the
higher activation energy (Ea = 0.42 eV) compared to the fully
Zr-disordered state (Ea = 0.28 eV), as shown in Figure 3c. In
contrast, the energy landscape for β-LZC (orange line in
Figure 3b) closely resembles that of fully disordered states
(dark-red lines in Figure 3b), consistent with the MD findings
that suggest similar activation energies (Ea = 0.31 eV) for the
two degrees of Zr disorder in β-LZC.
An illustration of the difference in the Li transport kinetics is

demonstrated in Figure 4, where the RT Li displacements over
5 ps from MD simulations are plotted. Very limited movement
of Li ions is observed within the Zr ground-state structures as
the Li ions oscillate around their equilibrium sites (Figure
4a,c). At Teff = 3050 K, limited Li hops to the nearest sites are

Figure 2. (a) The average potential energy above the ground state (ΔE = E(Teff) − EGS) sampled full equilibrium CE-MC simulations. The
green and orange dots represent α/β-LZC, respectively. The shaded regions label the increase of potential energy as an indication of the Zr
disorder. (b) Calculated heat capacity Cv. The first rise in Cv corresponds to the transition to Li/vacancy disorder, and the second rise
(indicated by the shaded region) corresponds to the transition where Zr disorders.
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observed for α-LZC due to the partial Zr disorder, whereas β-
LZC shows more extensive Li diffusion. With substantial Zr
disorder (Teff = 5000 K), the RT Li displacements demonstrate
interconnected diffusion pathways across Li sites, which
rationalize the high Li mobility promoted by Zr disorder.
In the realm of ASSBs, chloride-based lithium superionic

conductors stand out because of their high ionic conductivity,
interface stability, and oxidation resistance. Optimizing the Li
migration barriers and increasing Li site connectivity are
important roads for enhancing Li-ion conductivity in chloride-
based solid-state electrolytes.42 Prior research has indicated
relatively low energy barriers (<0.3 eV) for lithium diffusion in
both hcp and ccp frameworks of chlorides from either NEB
calculations or by fitting the diffusivities derived from AIMD
simulations at high temperatures.12 However, the LZC
synthesized by solid-state heating exhibits a much higher
activation energy and lower Li-ion conductivity at RT than
those would be expected from these basic models. Ball-milled
LZC, on the other hand, is more conductive.
We selected the LZC system as a representative model to

elucidate the effect of cation disorder on ionic transport,
because it exists in both α- (hcp) and β-phases (fcc),
encompassing the typical anion arrangements common for
closed-packed halide conductors. We quantified the degree of
cation disorder within LZC by distinguishing between two key
degrees of freedom: Li/vacancy disorder and Zr disorder. Our
CE-MC simulations reveal three key findings: (1) no
spontaneous Zr disorder is attainable through thermal
fluctuations alone at any temperature reasonably accessible in

solid-state synthesis, (2) thermal fluctuations at RT are
inadequate to sustain Li/vacancy disorder when Zr is well-
ordered in its ground state, and (3) Zr disorder frustrates the
configurational energy landscape and enables facile Li/vacancy
disorder at RT. These findings are supported by MLIP-MD,
which reveal significant non-Arrhenius behavior of the Li
diffusivity when Zr is well-ordered in contrast to the Zr-
disordered states, which show typical Arrhenius behavior in the
full temperature range. Using MLIP-MD, evidence for non-
Arrhenius behavior has also been shown for several other
ch lor ide compounds , such as Li 3YCl6

26 , 4 3 and
Na3−xY1−xZrxCl6,

44,45 leading to reduced conductivities near
room temperature.
Our simulations reveal that the β-LZC polymorph exhibits a

lower activation energy (Ea = 0.68 eV) than α-LZC (Ea = 0.97
eV) when Zr is fully ordered and that β-LZC achieves an
activation energy for Li-ion diffusion (Ea = 0.31 eV) similar to
that of the highly disordered state even with partial Zr disorder
(Figure 3d). While cation-disordered β-LZC has not been
synthesized yet, the lower activation energy of β-LZC suggests
that tuning cation occupancy may have the potential to achieve
fast Li transport, thereby avoiding synthesis via high-energy
ball-milling. Experimentally, only alternative approaches such
as aliovalent substitution (e.g., Sc/In) and lithium stuffing in
the fcc framework have been used to achieve conductivities
over 2 mS/cm in solid-state heated materials.19,20 An MLIP-
MD simulation of the doped Li2.5In0.5Zr0.5Cl6 finds high Li
diffusivity near RT (Figure S4), which agrees with the notion

Figure 3. (a,b) Li/vacancy configurational energy landscape {ET} sampled by MC annealing with fixed Zr ordering. The colored lines
represent the average energy sampled by the Li/vacancy degrees of freedom with various Zr orderings obtained by equilibration at Teff. The
rise in {ET} indicates the activation of Li/vacancy intersite exchanges (disorder). As the Teff at which the Zr was disordered increases, Li can
more easily sample higher-energy states. (c,d) Arrhenius plots of the MD simulated diffusivities vs temperature from 300 to 700 K. The MD
simulations started from the Zr configurations obtained with MC at Teff = 0 K (green triangles), 3050 K (orange dots), and 5000 K (red
squares). The dashed lines represent the activation energy fitted in the low-temperature range (T < 500 K). A significant non-Arrhenius
behavior is observed in Li diffusion in the ground-state structure. The presence of Zr disorder reduces the degree of non-Arrhenius behavior,
and the dashed line fitted in low-temperature regions extends well to the high-temperature region.
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that creating available hopping sites enables Li percolation and
improves ionic conductivity.29,42,46

In summary, our study identified metal disorder as a critical
determinant for achieving fast Li transport in Li2ZrCl6. The
high effective temperature required for Zr disorder limits
equilibrium pathways for its synthesis and highlights the
importance of manipulating cation disorder through non-
equilibrium synthesis strategies. As many such nonequilibrium
synthesis approaches are often more expensive and less
scalable, in particular given the air sensitivity of these materials,
novel strategies, including structural or chemical modifications,
may be required. The application of doping strategies or the
exploration of high-entropy approaches may serve as viable
pathways to introduce cation disorder, thereby promoting the
configurational entropy to facilitate the Li/vacancy disorder.47

Finally, given the importance of metal disorder for Li transport,
it may be required to better understand if such a disorder
remains thermally stable over the typical lifetimes expected for
battery materials.
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