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An �0�2-norm regularized regression model for construction of robust cluster expansions in
multicomponent systems
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We introduce �0�2-norm regularization and hierarchy constraints into linear regression for the construction
of cluster expansions to describe configurational disorder in materials. The approach is implemented through
mixed integer quadratic programming (MIQP). The �2-norm regularization is used to suppress intrinsic data
noise, while the �0-norm is used to penalize the number of nonzero elements in the solution. The hierarchy
relation between clusters imposes relevant physics and is naturally included by the MIQP paradigm. As such,
sparseness and cluster hierarchy can be well optimized to obtain a robust, converged set of effective cluster
interactions with improved physical meaning. We demonstrate the effectiveness of �0�2-norm regularization
in two high-component disordered rocksalt cathode material systems, where we compare the cross-validation,
convergence speed, and the reproduction of phase diagrams, voltage profiles, and Li-occupancy energies with
those of the conventional �1-norm regularized cluster expansion models.
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I. INTRODUCTION

First-principles density functional theory (DFT) cal-
culations have been demonstrated as a reliable tool in
computational materials science. Despite the increase in com-
puting power and accuracy of DFT methods, the scaling
with the number of atoms ∼O(n3) intrinsically prohibits
large-scale calculations (over 103 atoms) or sampling of a
high-dimensional occupancy space (millions of structures)
[1]. This is particularly relevant in systems with configura-
tional degrees of freedom that need to be sampled at nonzero
temperature to equilibrate states of partial order, and their
associated entropy and free energy. The state of configura-
tional order determines many materials properties, especially
in systems composed of many species (high-entropy systems).
It has also recently been shown to be relevant for mechani-
cal properties in metallic alloy systems [2,3] and the energy
density of complex electrode materials for energy storage
application [4–7].

The cluster expansion (CE) method has been well devel-
oped to describe such configurational energetics for metallic
alloys [8,9], as well as for ionic systems [10,11]. The CE
method expands any property (e.g., formation energy, volume)
in terms of the distribution of atoms on a set of predefined
sites. When the quantity being expanded is the energy, the
expansion coefficients are referred to as effective cluster in-
teractions (ECIs). For example, in a multicomponent system,
the energy is expanded as

E (σ ) =
∑

β

mβJβ〈�α∈β〉β, �α =
N∏

i=1

φαi (σi ). (1)
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A configuration σ represents a specific occupancy on all the
sites of the system, where σi describes which species sits on
the i-th site of the structure. The site basis function φαi (σi )
transforms the occupancy variable σi into a scalar value. There
are typically as many (nonconstant) cluster basis functions as
possible occupancies on a site minus one. The cluster basis
function label α = (α1, α2, α3, . . .) indicates a group of sites,
each with a specific basis function on it, where each entry
αi labels the corresponding site basis function φαi . Thus the
cluster basis function �α = ∏N

i=1 φαi (σi) can be obtained by
taking the product of site basis functions.

For example, the cation sublattice of a LiMnO2 rocksalt
oxide is a binary system, where Li and Mn share the octahe-
dral interstitial of the FCC anion framework. In such a system,
Li can be encoded by σ Li = 0 and Mn by σ Mn = 1. The
parameter αi takes a value from [0, 1, . . . , M − 1], where M is
the number of allowed species defined on the sublattice (e.g.,
M = 2 for Li-Mn). While many forms of site basis function
can be used [8,12,13], a sinusoid (orthogonal) basis function
is applied here to transform the occupancy variable (σ Li, σ Mn)
into a value [14], where

φ j (σi ) =

⎧⎪⎨
⎪⎩

1 if j = 0

− cos
(

π ( j+1)σi

M

)
if j is odd

− sin
(

π jσi

M

)
if j is even

. (2)

The j indicates αi in Eq. (1) and can take a value of 0
or 1. Thus we have φ j=0 ≡ 1, φ j=1(σ Li = 0) = −1, and
φ j=1(σ Mn = 1) = 1. This situation corresponds to the spin
variables used in a generalized Ising model [15,16]. For
systems with species number M > 2, the basis functions
take values beyond those of spin variables {−1, 1} typically
used in binary CE. Some examples of other types of site-
basis functions also developed for the CE method are the
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FIG. 1. (a) The general flowchart of constructing a CE model, including initialization of input structures, DFT calculations, fitting and
convergence check, and cluster expansion Monte Carlo (CEMC) for sampling. (b) An illustration of �2, �1, and �0-norm regularization in a
two-parameter space J = (J1, J2). The blue circles represent the contours of the data term ||EDFT,S − �SJ||22 in cost function. The red regions
represent the constraints of parameters (e.g., J2

1 + J2
2 � s for �2-norm, |J1| + |J2| � s for �1-norm.) The dark red point is the intersection of

data term and regularization of parameters, which jointly determines the estimation of J.

Chebyshev polynomials [8] and the indicator function (point
delta function) [12].

In Eq. (1), the correlation function 〈�α〉β is calculated by

〈�α(σ)〉β = 1

Nσmβ

∑
α∈β

�α(σ), (3)

where β is an orbit representing all symmetrically equivalent
cluster basis functions α, and mβ is the corresponding multi-
plicity. Nσ is the size of the supercell of configuration σ; thus,
the correlation function is well normalized with respect to
the primitive cell. Jα is the effective cluster interaction (ECI).
We refer readers to Refs. [8,14,17,18] for a more extended
description of the CE. From Eq. (1), the CE energy is linearly
dependent on the ECIs J when the configuration σ is fixed.
We can thus write

ECE(σ) = �(σ) · J, (4)

where �(σ) is a row vector of correlation functions and J is
the column vector of ECIs.

Figure 1(a) presents a brief illustration of how to iteratively
construct a CE Hamiltonian. In practice, the CE model is ini-
tially fitted on a small set of DFT calculations. Then, a simple
CE is fitted that can be used in a Monte Carlo simulation to
sample new structures. DFT calculations will be applied to a
sample of the MC-obtained structures, and a new CE will be
fitted. This procedure will be performed iteratively until the
model is converged (i.e., the cross-validation error remains
low and stable, the model reproduces DFT ground states well,
etc.) [19]. In such a process, it is always desirable to achieve
fewer training iterations, as DFT calculations are costly in
terms of CPU time. On the other hand, fewer structures may
also result in a worse fitting due to insufficient sampling of the
configuration space.

Obtaining reliable ECIs J from the DFT energy of a set
of configurations is the central problem of CE fitting. Given a
set of input occupancy configurations S, the set of correlation
vectors forms a feature matrix �S = [�1,�2, . . . ], and the
corresponding DFT energies are used to construct the target
vector EDFT,S . Determining the ECIs is an inverse problem of

Eq. (4), also called linear regression. Generally, the problem
can be solved by minimizing the cost function

min
J

||EDFT,S − �SJ||22 + μ||J||p, ||x||p =
(∑

i

|xi|p

) 1
p

,

(5)
where the p-norm of J is added to regularize the fit and
suppress over-fitting, and μ controls the degree of regular-
ization. Figure 1(b) shows the comparison of �2, �1, and
�0-norm regularization in a two-parameter space J = (J1,
J2). The blue circles are the contours of the data term error
||EDFT,S − �SJ||22. The red regions represent the regulariza-
tion constraints on the parameters (||J||p � s), which can be
transformed to a Lagrangian form μ||J||p as shown in Eq. (5).
The dark red point is the regularized estimation of J, which is
the intersection between the data error term and the regular-
ization term. The �1-norm tends to generate sparser solutions
compared with the �2-norm, because the intersection is likely
to be located on the axis. The �0-norm counts the nonzero
elements of J, where the intersection is exactly located on the
axis and thus the �0-norm imposes an exact sparsity constraint
on J.

Conventionally, �2-norm (ridge regression, p = 2) regular-
ization can be applied when the problem is over-determined
(i.e., the number of training structures is larger than the di-
mension of J). The �2-norm regularized regression reduces
the over-fitting caused by intrinsic noise in the training data.
This can be achieved solely by introducing the �2 regu-
larization function and additionally using the mixed-basis
expansion [20–22]. Bayesian approaches have also been suc-
cessfully applied to estimate the ECIs with a prior distribution
in several binary systems [22–24]. However, the number of
ECIs increases combinatorially with the number of species,
scaling approximately as

∏
k (Mk − 1)nk , where Mk is the

number of species on the k-th sublattice, and nk is the number
of cluster sites in the same sublattice k. The explosion in
the number of basis functions when many species can oc-
cupy a site makes it difficult to predefine which cluster basis
functions contribute to the expansion for high dimensional
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multicomponent systems (i.e., which cluster basis function
has a nonzero element in the solution of J). Therefore a sparse
solver for ECIs selection is required.

Rigorously, the exact sparse solution of Eq. (5) is ob-
tained with �0-norm regularization of J. However, it is hard
to compute the ||J||0 in the cost function as it is an NP-hard
problem. In the compressive sensing paradigm, the �0-norm
can be transformed to an �1-norm when the feature matrix �S

satisfies the restricted isometry property (RIP) condition [25].
To satisfy the RIP condition in CE, Nelson et al. [26] proposed
to generate a training set in which each row is an identical
independent distributed (i.i.d.) random vector. However, in
practical cases, the configurations in the training set S are
correlated, because structures are not randomly sampled, but
are mostly part of an ensemble of configurations with low
energy. Such correlations fail to satisfy the i.i.d. condition.
Moreover, generating structures from a specific correlation
vector is also an NP-hard problem. Though the strict com-
pressive sensing cluster expansion is not easy to construct in
practice, the �1-norm (lasso, p = 1) regularization is widely
used as feature selection, which has shown success in various
alloy and ionic systems [13,26–28].

In this paper, we propose an �0�2-norm regularization
approach that incorporates hierarchy constraints to generate
more robust and predictive CE models. First, we introduce
the �0�2-norm penalty term and hierarchy constraints in the
paradigm of mixed-integer quadratic programming (MIQP).
Second, we compare the sparseness and convergence rate of
ECIs with those of the conventional �1 method in the Li-Mn-
V-Ti-O-F disordered rocksalt system. Finally, we demonstrate
that an �0�2-regularized CE better reproduces the correct
physical interactions by comparing with �1-CE in terms of
computed phase diagrams, voltage profiles, and related phys-
ical quantities in the Li-Mn-Ti-O system.

II. METHODS

A. The �0-norm regularization

In Eq. (5), p = 0 manifests itself as a pseudonorm that
counts the number of nonzero elements of J:

||J||0 =
∑

i

Ind(Ji ), Ind(Ji ) =
{

0, Ji = 0

1, Ji �= 0
. (6)

Adding the �0 term into the cost function directly penalizes
the number of nonzero ECIs, yielding better sparseness in its
solution. However, optimizing a cost function with an �0 term
is an NP-hard problem and is difficult to present in a direct
way [25,29]. Previously, Huang et al. [30] has approached
the problem by rewriting �0 optimization as a mixed-integer
programming problem, such that

min ||J||0 ⇔ min
∑
c∈C

z0,c

s.t. Mz0,c � Jc, ∀c ∈ C,

Mz0,c � −Jc, ∀c ∈ C,

z0,c ∈ {0, 1}, ∀c ∈ C,

(7)

where M is a sufficiently large number (larger than the max-
imum possible absolute value of any ECI), and z0,c is a
slack variable (binary integer) indicating whether the ECI of

orbit c is zero or not. Jc is constrained to 0 when the slack
variable z0,c = 0 (inactive) and to [−M, M] when z0,c = 1
(active). (For a rigorous mathematical background, refer to
Ref. [30].) In practice, it is shown that one can at least
obtain a sparseness-improved near-optimal solution within a
reasonable CPU time cutoff. In our benchmark tests of the
Li-Mn-V-Ti-O-F and Li-Mn-Ti-O systems, the optimizations
of ECIs were completed within 600s using the GUROBI pack-
age [31].

B. Hierarchy constraints

In a CE, clusters are usually enumerated in an itera-
tive, low-to-high order (i.e., from singlets to pairs, triplets,
quadruplets, and so on). Practically, the CE is truncated to
a maximum of n (e.g., quadruplet clusters with n = 4 are a
typical limit), ignoring the higher-order interactions to control
the model complexity. To differentiate the cluster orbits by
different significance, we take one of the basic assumptions
of CE that n-body cluster interactions become less important
to the configurational energy (or other scalar properties) as
n becomes larger. This assumption means that the majority
of the fitted property can be described by the lower-order
interactions and that the higher-order interactions serve as the
fine-tuning part in the fitting.

Such a physically inspired concept can be introduced in the
form of hierarchy constraints, as has been done successfully
in some previous studies [32–34]. The hierarchy constraint
manifests itself as Jb �= 0 if and only if Ja �= 0 (a ⊂ b), where
a and b are a lower- and higher-order cluster function orbit,
respectively, and b contains all the site bases of a as a subset.
In the MIQP representation, the hierarchy relationship can be
easily expressed as a constraint between slack variables:

z0,b � z0,a, a ⊂ b. (8)

This treatment was first proposed by Huang et al. [30], where
it was used in the �0�1-norm regularization paradigm.

C. The �2-norm regularization

We propose that combining �2-norm and �0-norm regu-
larization can impose true hierarchy constraints unlike the
�0�1-norm. It is to be noted that the inequality between slack
variables does not necessarily impose the hierarchy relation
(Jb �= 0, iff Ja �= 0). This is because the hierarchy constraints
are defined on the magnitude of ECIs Ja and Jb, while the slack
variables z0,b, z0,a are intermediate to represent the presence or
exclusion of the variables.

When implementing the hierarchy constraints in �0�1-
norm regularization, pseudoactive behavior can manifest itself
when a J = 0, but its slack variable z0 = 1 within the MIQP
paradigm. J can be regularized to zero, which is still a valid
solution between [−M, M], even with z0 = 1. This is caused
by the fact that the �1-norm has feature-selection proper-
ties that intrinsically produce a sparse solution [35]. This
pseudoactiveness can introduce excessive sparseness to the
solution and break the hierarchy constraints. Figure 2 presents
an example of pseudoactiveness in �0�1-norm regularization.
The excessive sparseness is introduced to the orbit β with
Jβ = 0, while all orbits α, β, γ has active slack variables
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FIG. 2. Illustration of hierarchy relations (α ⊂ β ⊂ γ ) between
pair, triplet, and quadruplet orbit. The different colors on the cluster
sites represent the decorating species for a given site-basis function.
The equation in red shows a pseudoactive hierarchy constraint that
may appear in �1-norm and its derivative methods.

z0 = 1. The higher-order orbit γ is erroneously activated
while Jβ = 0. To avoid such a situation and ensure proper
function with �0 under hierarchy constraints, a norm with
no feature-selection properties is required. The �2-norm is a
natural choice.

With the introduction of the �0�2-norm and hierarchy con-
straints, the final ECI optimization problem can be written as

min
J

JT �T
S �SJT − 2ET

DFT�SJ + μ0

∑
c∈C

z0,c + μ2||J||22

s.t. Mz0,c � Jc, ∀c ∈ C,

Mz0,c � −Jc, ∀c ∈ C,

z0,b � z0,a, ∀a ⊂ b, {a, b} ∈ C,

z0,c ∈ {0, 1}, ∀c ∈ C,

(9)

where ||J||22 = JT J penalizes the magnitude of ECIs, thus
avoiding over-fitting by regularizing sampling noise while
the �0-term

∑
c z0,c optimizes the sparseness. The hierarchy

constraints ensure correct containment relationships by man-
ifesting lower-order ECIs first to reduce redundancy. The
packages for our implementation are available in Ref. [36].

III. RESULTS

As mentioned above, for systems with many species, the
number of basis functions grows rapidly. An example of
such systems are the Li-excess disordered rocksalts (DRX),
which are multicomponent systems that can be synthesized
with a wide variety of elements [37]. Recently, high-entropy
DRX materials have been synthesized with up to 12 metal
species [6]. In addition, their configurational short-range order
is critical to their transport properties, warranting a detailed
CE approach [5,38]. Here, we provide a heuristic solution to

FIG. 3. (a) An illustration of the rocksalt lattice structure. The
cation sites are labeled in red and can be occupied by Li+ and
transition metals (TM, including Mn2+, V3+, and Ti4+ in our ex-
ample) in DRX. The anion sites are labeled in gray and can be
occupied by O2− and F−. The lower panel gives some examples of
n-body (n = 2, 3, and 4) clusters used in the CE model, including
intra and inter-sublattice interactions. (b) The procedure to obtain an
�0�2-norm regularized solution, including finding the μ2 by mini-
mizing the CV error in ridge regression, sparseness engineering with
�0-norm using MIQP, and terminating if the solution is converged
with good sparseness, as well as good-reproduction-relevant physical
properties.

study configurations in such high-dimensional DRX systems
by applying an �0�2-regularized CE model to fit the formation
energy of DRX compounds.

A. Robustness and convergence

The convergence of the CE when the �0�2-norm and hier-
archy constraints are enforced was tested on configurational
disorder in the LiF-MnO-LiVO2-Li2TiO3 composition space.
The CE model contains pair interactions up to 7.1 Å, triplets
up to 4.0 Å, and quadruplets up to 4.0 Å based on a lattice
parameter a = 3 Å for the primitive cell. Figure 3(a) presents
the rocksalt framework of a DRX structure. The framework
contains a cation sublattice (red) and anion sublattice (gray),
where the cation sites can be occupied by Li and transition
metals (TM, including Mn2+, V3+, and Ti4+ in this example)
and the anion sites can be occupied by O2− and F−. A species
indicator where the site basis function reads φ j (σi ) = δi, j was
used [12]. The electrostatic energy (Ewald energy E0/εr) is
also included to capture long-range electrostatic interactions
(E0 is the unscreened electrostatic energy and 1/εr is fitted
as one of the ECI (1/εr � 0) [39,40]. In total, 162 ECIs
(including the constant term J0) are predefined in the CE
Hamiltonian. The dimension of the feature matrix �DFT,S is
487 × 162. The performance of the �0�2-CE is compared with
the �1-CE. We emphasize two major improvements in the
�0�2-CE.

1. Sparseness versus cross-validation error

Cross-validation (CV) error versus model complexity is a
general metric used to evaluate the robustness of a CE model.
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FIG. 4. (a) Cross-validation error (meV/atom) of the �1-CE and
the �0�2-CE. The sparseness is the number of nonzero ECIs in the
fit (||J||0). The curves are generated by varying hyperparameters
μ0, μ1, and μ2 in regularization. (b) ECIs convergence test vs
training set size. J is the ECIs fitted with full training data, and Jsub

is the ECIs fitted with a subset of corresponding size.

The optimal trade-off between under-fitting and over-fitting
can be found with a CV test, where the optimal model is fitted
with the regularization hyper-parameter μ that minimizes the
CV error. In our test, a k-fold CV error is used,

CV =
√√√√1

k

k∑
j=1

MSE j, MSE = 1

N

N∑
i=1

(
Ei

DFT − Ei
CE

)2
, (10)

where CV is the cross-validation error averaged over k splits
of the validation dataset, and MSE is the mean-squared-error
of each validation dataset. Here, N is the size of the validation
dataset, and k = 5 is the number of folds. In our tests, the
regularization hyperparameter μ is selected from the loga-
rithm space between [10−6, 10−1]. The sparseness is defined
as the number of nonzero elements of the solution (||J||0) and
represents the model complexity.

The CV error versus sparseness is presented in Fig. 4(a) for
an �1 and �0�2-norm regularized CE. For the �0�2-CE, the CV
error remains low as the sparseness varies between 25 and 150
ECIs. In this regime, the �0�2-CE shows no sign of over-fitting
as the CV error remains near the global minimum around
6 meV/atom. The �1-CE shows a similar optimal CV error
as that of �0�2-CE near this minimum plateau regime from
50 to 100 in sparseness. However, as the model complexity
changes, the CV error increases at both low and high sparsity,

indicating that the �1-CE is less robust against the choice of
model complexity. Therefore we conclude that the �0�2-CE
can reach low CV error with a lower complexity, which is
empirically believed to result in models that better reproduce
physics. A more sparse CE can increase the computational
speed of energy evaluations and is also less sensitive to model
complexity change as compared with the �1-CE.

2. (2) Convergence of ECIs with a subset of training data

The second point that we want to emphasize is that the
�0�2-CE converges to its most accurate solution faster than the
�1-CE, which lowers the risk of obtaining an over-fitted result
when the configuration space is undersampled. This is an im-
portant improvement in the practical use of CE constructions.
To test this hypothesis and mimic the iterative sampling pro-
cess, we designed a numerical experiment based on a finished
DFT dataset (with 487 structures in total). Then, we evaluated
the quality of fits performed on subsets of training data of
increasing size. We subsequently compared the subset-fitted
ECIs Jsub with the full-set result. In such a comparison, the
ground-truth (full set) solution is set as follows. (1) For the
�1-CE, the regularization parameter μ1 is chosen at the min-
imum CV error according to Fig. 4(a). This solution has 99
nonzero ECIs when all 487 training structures are used in the
fitting. (2) For the �0�2-CE, to compare the convergence rate
under a similar degree of model complexity, hyperparameters
are selected such that the �1-CE and �0�2-CE have similar
sparsity. The resulting �0�2-CE has 92 nonzero ECIs with all
487 training structures included according to Fig. 4(a).

After setting the hyperparameters for both models,
we compared the normalized absolute difference ||Jsub −
J||1/||J||1 between the �1-CE (blue line) and �0�2-CE (red
line) in Fig. 4(b). For each subset size, ten randomly selected
subsets with the same size were evaluated and averaged. The
solid square represents the average, and the error bar repre-
sents the standard deviation resulting from different subsets.
Figure 4(b) indicates that the �1-CE demonstrates higher de-
viation from the ground-truth solution and converges more
slowly to it than the �0�2-CE as the training set is increased.
This result unambiguously demonstrates the robustness of
�0�2-CE to work with small input data sets.

B. ECIs with improved physics

From a general perspective of machine learning (ML), the
predictions of energies are made by fitting statistical models
on a group of data points. The statistical models can predict
the absolute energy with high accuracy by minimizing the
cost function, which is constructed by the difference between
prediction and observation of the training data. However, in
materials science, relative energy quantities are of greater sig-
nificance than the absolute one (such as energy above the hull,
phase diagram and the derivatives of formation energy with
respect to the compositional variables). Bartel et al. [41] crit-
ically examined several ML models for energetics prediction,
and found that while the models predict the formation energy
(�Hf ) of materials well, they failed to predict the relative
phase stability. Such a dilemma indicates that the prediction
error (CV or RMSE) is not the only thing one should consider
when constructing a statistical model for the energy.
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To demonstrate that the �0�2-CE also leads to a more
physically informed solution, we studied a multicomponent
system: Li-Mn-Ti-O oxide in an fcc rocksalt framework, with
Li+-Mn2+-Mn3+-Mn4+-Ti4+-vacancy disorder on the octahe-
dral cation sites and Li+-Mn2+-Mn3+-vacancy disorder on
the interstitial tetrahedral sites. The Li-Mn-Ti-O composition
space contains a number of battery-relevant systems [4,5].
These battery systems are charged and discharged by adding
or removing lithium (i.e., lithiation or delithiation) and a
charge-compensating electron, which reduces or oxidizes a
transition metal. As a result, an important physical property to
correctly model in the Li-Mn-Ti-O system is the energetics of
Li in octahedral vs. tetrahedral sites. One significant battery-
relevant system in which the effects of Li local environment
preference are especially presented is the LiMn2O4 spinel.
When fully lithiated to Li2Mn2O4, Li ions occupy octahedral
sites while the Li ions occupy tetrahedral sites for composi-
tions LixMn2O4 when x � 1.

Thus we design two additional tests to ensure that the
CE models well represent the physics of the Li octahedral
versus tetrahedral site preferences. Specifically, we compare
how well the CE model reproduces: (1) energy differences
between the Li in the tetrahedral and octahedral sites in lay-
ered MnO2 and spinel MnO2 frameworks and (2) a simplified
spinel voltage profile against the DFT ground truths. The
simplified spinel voltage profile includes the fully lithiated
rocksalt-like Li2Mn2O4, the spinel LiMn2O4, the commonly
seen Li0.5Mn2O4 ordering, and the fully delithiated Mn2O4

and is calculated by taking the average voltage between each
set of adjacent orderings. The average voltage is calculated
using DFT and the following equation [42–44]:

V̄ (x1, x2) ≈ −ELix1 Mn2O4 − ELix2 Mn2O4 − (x1 − x2)ELi

F (x1 − x2)
, (11)

where x1 and x2 are adjacent Li contents with x1 > x2, ELi

is the DFT energy of bcc Li metal, and F is the Faraday
constant.

The CE was generated with pair interactions up to 7.1 Å,
triplet interactions up to 4.0 Å, and quadruplet interactions up
to 3.0 Å based on a primitive cell of the rocksalt structure
with lattice parameter a = 3 Å. A sinusoid site basis was used
[Eq. (2)]. In total, 1475 ECIs (including the constant term
J0) were predefined in the CE Hamiltonian. The dimension
of the feature matrix is 1137 × 1475. Because of the high
compositional dimensionality, the possible number of ECIs
within the interaction cutoffs is large. In addition, there are
some constraints on the occupancies in the Li-Mn-Ti-O sys-
tem, such as (1) the total number of Li, transition metals, and
vacancies is fixed between octahedral and tetrahedral cation
sublattice; (2) the net charge of the system must be neutral,
etc. These relations and the inability to sample all possible
configurations with DFT reduce the rank of the feature matrix
below the dimension [rank(�S ) = 557], which indicates that
a sparse solution is required.

From the test results in Fig. 4, we notice that when the
sparseness varies, the variation of the CV error is smaller
when the CE is regularized with the �0�2-norm than with the
�1-norm. This result indicates that �0�2 has a hyperparameter
space that is larger and more tunable, whereas the �1-CE is

more deterministic with a small range of optimal μ1 obtained
by minimizing the CV error. Motivated by this observation,
the selection of ECIs for the Li-Mn-Ti-O system was com-
pleted as follows.

The regularization strength μ1 in the �1-CE was selected
from the stable plateau region when minimizing the CV error
in lasso (e.g., the μ1 associated with points between sparse-
ness of 50 to 100 in Fig. 4). For the �0�2-norm, the μ2 was
selected from the stable plateau region by minimizing the CV
error in ridge regression, similar to what is done for �1-CE.
After obtaining the optimal μ2, the solution for �0�2-CE was
further determined by searching μ0 for a solution with the
proper sparseness (at least ||J||0 < rank(�S), μ1, μ2, μ0 ∈
[10−6, 10−1]). For both �1-CE and �0�2-CE, several models
with low CV error were tested for their ability to well repro-
duce physical properties, such as minimal violation of DFT
ground states in the phase diagram, voltage profile comparison
against DFT, as well as the Li-site energy difference between
tetrahedral and octahedral occupancy. The best performing
models for both �1 and �0�2 are presented in Fig. 5, respec-
tively.

Figure 5(a) presents a comparison of ground-state phase
diagrams with the �1-CE predictions, �0�2-CE predictions,
and DFT calculations. The phase diagrams were generated
with in-sample training data (all 1137 structures evaluated
with DFT) for both DFT and CE models. We take the DFT
phase diagram as the ground truth. In formation-energy pre-
diction, the phase diagram is a key quantity that directly
demonstrates the correct physics near the ground states. As the
ground states are formed variationally, they are particularly
discerning towards spurious ECIs, as the nonphysical noisy
interactions often create new ground states leading one to miss
the true ground states. Thus a well-reproduced phase diagram
is desirable for a CE model. In our tests, the �1-CE creates
12 new ground states, indicating that the correct physics in
terms of cluster interactions is not well captured. However,
the �0�2-CE preserves most of the DFT ground states, with
only four spurious “ground states” in the �0�2-CE phase
diagram.

The improvement in the physics of the predictions associ-
ated with applying the �0�2-norm with hierarchy constraints is
further demonstrated by the voltage profile and Li-occupancy
energy. In Fig. 5(b), the voltage profiles generated by predic-
tion using the �1-CE and �0�2-CE (blue lines) are compared
with those from DFT (orange lines), taken as the ground truth.
We can see that the �1-CE incorrectly predicts the voltage
plateau between x = 0.5 to 1 in the LixMn2O4 spinel-like
structure such that the x = 0.5 configuration is no longer
stable (the voltage between x = 0.5 and 1.0 is higher than that
between x = 0.0 and 0.5). In contrast, the �0�2-CE matches
very well with the DFT-generated voltage profiles. The er-
roneous predictions of the �1-CE are further confirmed by
the Li-occupancy energy. In Fig. 5(c), the energy difference
between Li in octahedral and tetrahedral occupancy was eval-
uated in the layered-MnO2 and spinel-MnO2 frameworks. The
absolute error compared with DFT is 0.52 eV (layered) and
0.18 eV (spinel) for the �1-CE, whereas that for the �0�2-CE
is 0.09 eV (layered) and 0.09 eV (spinel), respectively. A
significant reduction of prediction error is observed with the
�0�2-norm regularized CE.
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FIG. 5. (a) Phase diagram generated with DFT, �0�2-CE, and �1-CE. The DFT ground states are labeled in blue text. The incorrectly
predicted ground states are labeled with red circles and text. (b) The simplified spinel voltage profile (blue line) generated by �1-CE and
�0�2-CE for spinel orderings in LixMn2O4 is compared with the DFT ground-truths (orange line). (c) Energy difference of Li occupation in
octahedral and tetrahedral sites in layered MnO2 (top) and spinel MnO2 framework (bottom).

IV. DISCUSSION AND SUMMARY

In two complex oxide systems, we showed that the �0�2-
CE with hierarchy constraints outperforms the conventional
�1-CE in terms of sparseness against CV error, convergence
rate with a subset of training-data, and some critical physical
quantities in Li intercalation materials. More generally, the
optimization of the ECIs is not deterministic within a single
method, and the successful construction of a CE model typ-
ically relies on two aspects: (1) choosing a valid interaction
space by truncating the clusters or orbits and (2) applying a
proper optimization algorithm to obtain the ECIs. The results
in this paper show that for the second step, the �0�2-norm
method is the superior choice for a robust and physical so-
lution compared to the conventional �1 method.

We note that one limitation of the �0�2-norm method in the
MIQP paradigm is the computational efficiency. As solving
the �0-norm is an NP-hard problem, more computational time
is required to solve the MIQP when more predefined ECIs

are included. The �0�2-CE works well for relatively small
or well-predefined systems [dim(�S ) � 2000]. Therefore the
most applicable way to use �0�2-norm regularized CE with
hierarchy constraints is likely to be as follows: (1) define a CE
within a relatively small cutoff and truncate to quadruplet or
quintuplet clusters at most [ideally staying within dim(�S ) �
2000] and (2) follow the procedure described in Fig. 3(b)
to determine the optimal hyperparameter to obtain the ECIs.
However, we note that dim(�S ) � 2000 applies to virtually
all known published CE.

To obtain a model that represents the physics of a system
well, the relative difference of energies between configura-
tions is of greater significance than the absolute ones. In
ordinary least-squares fitting, the cost function only focuses
on the global averaged error of the training set, which leads
to over-fitting. Adding regularization of the ECIs can alle-
viate this issue by constraining the optimization space of
parameters, but our results show that not all regularization
creates physically meaningful solutions. We propose that it is
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beneficial to include the physically inspired constraints into
the design of the cost function, such as adding hierarchy
constraints with �0�2-norm implementation. The �0�2-CE can
improve the physical meaning of the solution and break the
correlation between coupled clusters, which is achieved by
directly penalizing the number of nonzero ECIs for feature
selection and enforcing hierarchy relations between ECIs via
the slack variables in the MIQP paradigm. The �0�2-CE gives
an estimation of the ECIs with reasonable physics near the
ground-states, but does not strictly enforce the preservation of
ground states. Additionally, the ground-state preservation can
be further achieved by adding inequality constraints on the
energies into Eq. (9) as shown in previous work [19].

In summary, our method sheds light on how to obtain good
ECIs for simulations in complex and coupled multicomponent
systems, with several proposed criteria in ECIs optimization:
(1) minimize the CV error under general regression level (e.g.,
ridge regression); (2) as the sparseness describes the complex-
ity of and number of independent variables, the sparseness
of the solution shall be improved (reduced) with reasonable
in-sample training error; and (3) check the near-ground-state
behavior and related physics for the optimal ECIs selection.
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APPENDIX: DFT CALCULATIONS

DFT calculations were performed with the Vienna ab ini-
tio simulation package (VASP) using the projector-augmented
wave method [45,46], a plane-wave basis set with an energy
cutoff of 520 eV, and a reciprocal space discretization of 25 k
points per Å. All the calculations were converged to 10−6 eV
in total energy for electronic loops and 0.02 eV/ in interatomic
forces for ionic loops. In the LiF-MnO-LiVO2-Li2TiO3 sys-
tem, we used the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation exchange-correlation functional [47]
with rotationally averaged Hubbard U correction (GGA + U )
to compensate for the self-interaction error on all transition-
metal atoms except titanium [48]. The U parameters were
obtained from the literature, where they were calibrated to
transition-metal oxide formation energies (3.9 eV for Mn and
3.1 eV for V). The GGA + U computational framework is
believed to be reliable in determining the formation enthapies
of similar compounds [49]. In the Li-Mn-Ti-O oxide system,
the strongly constrained and appropriately normed (SCAN)
meta-GGA exchange-correlation functional was used [50].
The SCAN functional is believed to have better performance
at capturing charge transfer due to better redox and atomic
coordination prediction [51,52], which would improve the
accuracy of energetics involving introducing vacancies on oc-
tahedral and interstitial tetrahedral sublattices in the rocksalt
framework.
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