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A B S T R A C T

Monte-Carlo sampling of lattice model Hamiltonians is a well-established technique in statistical mechanics
for studying the configurational entropy of crystalline materials. When the species to be distributed on the
lattice carry charge, the charge balance constraint on the overall system prohibits single-site Metropolis
exchanges in MC. In this article, we propose two methods to perform MC sampling in the semigrand-canonical
ensemble in the presence of a charge-balance constraint. The table-exchange method (TE) constructs small
charge-conserving excitations, and the square-charge bias method (SCB) allows the system to temporarily drift
away from charge neutrality. We illustrate the effect of internal hyper-parameters on the efficiency of these
algorithms and suggest practical strategies on how to employ these algorithms in real applications.
1. Introduction

Configurational disorder is particularly important for understanding
the thermodynamic properties of multi-component materials at finite
temperatures. The cluster-expansion (CE) method has been a successful
approach for studying the statistical mechanics of configurational dis-
order in solids [1–4]. The CE method has been used to calculate phase
diagrams in alloys [5–8] and ionic solids [9–12], predict the short-
range order related properties [13–16], find the ground-state ordering
in alloys [17–22], and compute voltage profiles of battery electrode
materials [23–27].

The CE method can be understood as a generalization of the Ising
model. The micro-states of a solid solution are represented as sequences
of occupancy variables 𝝈, which denote the chemical species occupying
the crystallographic sites in a structure. The configuration energy is
represented as a function of occupancy variables and is expanded as
a sum of many-body interactions,

𝐸(𝝈) =
∑

𝜷
𝑚𝜷𝐽𝜷 ⟨𝛷𝜶(𝝈)⟩𝜶∈𝜷 , (1)

where the cluster basis functions 𝛷𝜶 take as input the occupancy values
of different clusters of multiple sites. The cluster basis functions are
then grouped and averaged over orbits 𝜷 of symmetrically equivalent
clusters to generate correlation functions ⟨𝛷𝜶⟩𝜶∈𝜷 ; and 𝑚𝜷 is the mul-
tiplicity of orbit 𝜷 per crystallographic unit cell. The linear-expansion
coefficients 𝐽𝜷 are called effective cluster interactions (ECI). In a typi-
cal approach, ECIs are fitted to the first-principles calculated energy
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of a large number of ordered structures using (regularized) linear
regression [28–36]. Thermodynamic quantities can be obtained by
sampling the CE energy with Monte-Carlo simulations (CE-MC) [6,37–
39]. The CE-MC workflow allows fast statistical mechanics computation
of configurational disorder using only a relatively small amount of first-
principles calculations. Further details of the CE-MC method can be
found in various review papers [35,40–44].

CE-MC can be performed in a canonical ensemble or in a semigrand-
canonical ensemble. In a canonical ensemble, the configuration states
are sampled with a fixed composition of each species. Using the
Metropolis–Hastings algorithm [45,46], a typical MC step involves
swapping the species occupying two randomly chosen sites (canonical
swap). In a semigrand-canonical ensemble, the states are sampled under
fixed chemical potentials and allowing the relative amounts of each
species to vary. An MC step in the semigrand-canonical ensemble usu-
ally replaces the occupying species on one randomly chosen site with
another species (single-species exchange). Semigrand-canonical simu-
lations are the preferred approach for studying phase transition with
compositional changes in solids. In a semigrand-canonical simulation,
the system is always in a single-phase state, and transitions between
compositions are relatively easy to observe. In contrast, multiple phases
with different compositions can coexist in canonical simulations, giving
a disproportionate influence to the interfacial energy between phases.

Single-species exchanges can be applied without issue when the
species are all charge-neutral atoms. However, in an ionic system in
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Fig. 1. The procedure for proposing a table exchange in a conceptual quinary system. The system contains five different species (colored circles) and eight sites in a single
sub-lattice (labeled with indices). Four exchange directions 𝐮1, −𝐮1, 𝐮2 and −𝐮2 are included in the exchange table. In the green box to the lower-left, the probability for proposing
a particular configuration 𝜎′ from 𝜎 (𝑞𝜎𝜎′ ) is calculated as the product of three probabilities: the probability for selecting an exchange direction, the probability for choosing
removed species, and the probability for inserting new species to empty sites.
which species carry charge, net zero charge needs to be maintained,
essentially coupling allowed species exchanges. For simulating ionic
liquids, various methods have been proposed such as: inserting and
removing only charge-neutral combinations of ions [47]; performing
single insertion or deletion while controlling the statistical average
of the net charge to be equal to zero [48,49]; or using an extended
semigrand-canonical ensemble [50]. In practice, methods involving
simple multi-species exchanges have been applied to specific battery
materials [10,51]. However, charge-balanced MC methods in lattice-
model CEs with arbitrary complexity have not been formally addressed
in the literature yet.

In this study, we introduce two CE-MC sampling methods to handle
the charge-balance constraint in the semigrand-canonical CE-MC for
ionic systems with charge decoration. In the first method, which we
refer to as the table-exchange (TE) method, MC samples are kept
charge-neutral by using charge-conserving multi-species exchanges.
The second method, labeled the square-charge bias (SCB) method,
combines single-species exchanges which allows a non-zero charge with
a penalty on the net charge to bias the simulation towards zero charge.
We benchmark the computational efficiency of both methods over their
respective hyper-parameters and demonstrate proper usage strategies
using a complex rocksalt system with configurational disorder.

2. Methods

For simplicity, the formalism in the following discussion is limited
to crystal structures with a single sub-lattice. However, the method-
ology can be easily extended to multiple sub-lattices. We also restrict
our investigation to the application of a charge-balance constraint;
although more generic integral constraints on the composition (e.g., fix-
ing the atomic ratio between particular components to follow a specific
hyper-plane in the composition space) can be addressed in the same
manner.

2.1. Table-exchange method

In the semigrand-canonical ensemble with species carrying charge,
every possible occupancy state must satisfy the following constraints:
𝑆
∑

𝑠=1
𝐶𝑠𝑛𝑠 = 0,

𝑆
∑

𝑠=1
𝑛𝑠 = 𝑁,

(2)
2

𝑛𝑠 ∈ N, ∀𝑠 ∈ {1, 2,… , 𝑆},
where 𝑠 is the label of a species, 𝑛𝑠 is the amount of species 𝑠 in
configuration 𝝈, and 𝑁 is the total number of sites in the system. The
first equation is a charge-balance constraint, where 𝐶𝑠 is the charge of
species 𝑠. The second equation requires the number of species to be
equal to the number of sites. Eq. (2) is a system of linear Diophantine
equations with natural number solutions. All integral solutions 𝒏 =
(𝑛1,… , 𝑛𝑆 ) to these Diophantine equations can be represented as a
bounded fraction of a (𝑆 − 2)-dimensional integer grid in N𝑆 specified
as follows, [52]

𝒏 = 𝒏0 +
𝑆−2
∑

𝑖=1
𝑥𝑖𝒗𝑖,

s.t. 𝑥𝑖 ∈ Z, 𝒗𝑖 ∈ Z𝑆

𝑛𝑠 ∈ N, 𝑛𝑠 ≤ 𝑁,

(3)

where 𝒏0 is a base integer solution to Eq. (2), 𝒗𝑖 are 𝑆 − 2 linearly
independent basis vectors, and 𝑥𝑖 are integer coordinates on the grid.

Any vector 𝒖 = 𝒏′ − 𝒏 pointing from one solution 𝒏 on the integer
grid to another solution 𝒏′ is called an exchange direction. An ex-
change direction physically represents a composition transfer under the
charge-balance constraint. A selected set 𝑉 among all possible exchange
directions 𝒖 is called an exchange table. Based on the exchange table
𝑉 , we can define a random walk process between charge-balanced
compositions as follows:

(1) Using the current composition 𝒏, select one direction 𝒖 from all
feasible directions in the predefined exchange table 𝑉 . The feasibility
of a direction 𝒖 is defined with the requirement that for all 𝑢𝑠 < 0
(i.e. species 𝑠 is being removed), we have 𝑛𝑠 > −𝑢𝑠, ensuring a move
towards direction 𝒖 would not result in a negative amount of any
species.

(2) Perform the operation to the occupancy configuration according
to the selected exchange 𝒖, such that the composition 𝒏 changes to
𝒏 + 𝒖. Given 𝒖 = (𝑢1, 𝑢2,… , 𝑢𝑆 ). One such operation can be achieved
by removing −𝑢𝑠 of species 𝑠 from the occupancy for all 𝑢𝑠 < 0;
then inserting 𝑢𝑠 of species 𝑠 into the empty sites for all 𝑢𝑠 > 0. We
call such an operation a table exchange. A table exchange results in
a simultaneous exchange of species on multiple sites and is always
charge-conserving. The number of sites 𝑈 to be exchanged is called
the exchange size in direction 𝒖. Because any exchange should conserve
the site number, ∑𝑠 𝑢𝑠 = 0, it follows that 𝑈 =

∑

𝑢𝑠>0 𝑢𝑠 =
∑

𝑢𝑠<0 −𝑢𝑠.
A complete exchange table should have ergodicity, meaning that

an MC simulation should be able to reach any charge-balanced com-
position starting from any arbitrary configuration. Once ergodicity is
satisfied, the number of sites involved in the exchange directions should
be minimal, as exchanging a large number of sites in an MC step can
lead to a low acceptance ratio and thus inefficient sampling of the
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configuration space. It is not necessary, nor practical, to include all
possible directions 𝒖 in the table. Usually, as a minimal setup, one can
hoose 𝑆 − 2 linearly independent basis vectors ({𝒗𝑖}) with minimal
xchange size as well as their inverse vectors ({−𝒗𝑖}). The ergodicity of
table can be checked by enumerating charge-balanced compositions

n a specific super-cell size as vertices of a graph, and checking graph
onnectivity between the compositions using vectors in the table as the
dges of the graph. If ergodicity is not satisfied with the minimal setup,
nd the unreachable compositions are of interest, vectors linking the
isconnected composition to other compositions should be added to the
able, until the ergodicity is guaranteed.

According to the statements above, given an exchange table 𝑉 ,
one can propose semigrand-canonical MC steps using the following
procedure, which is illustrated schematically in Fig. 1,

1. Create a catalog of sites in the lattice. For a starting occupancy
state 𝝈, indices 𝑗 of sites are grouped by their current occupying
species 𝑠 to create sets of sites for each distinct species 𝐽𝑠 =
{𝑗|𝜎𝑗 = 𝑠}.

2. Select one feasible direction 𝒖 from table 𝑉 . The subset of table
𝑉 with all feasible directions at occupancy 𝝈 is denoted as 𝑉𝝈 .
The probability of selecting direction 𝒖 is denoted as 𝜃𝝈𝒖 . In this
work, we select all feasible directions with an equal probability
(𝜃𝝈𝒖 = 1∕card(𝑉𝝈 ),∀𝒖 ∈ 𝑉𝝈).

3. For all 𝑢𝑠 < 0, randomly pick −𝑢𝑠 sites from catalog 𝐽𝑠 without
replacement. Select all possible picking combinations at equal
probability (𝑃 = 1∕

∏

𝑢𝑠<0
( 𝑛𝑠
−𝑢𝑠

)

) and remove the species from
selected sites.

4. For all 𝑢𝑠 > 0, randomly select 𝑢𝑠 empty sites from the 𝑈 empty
sites created in Step 3 without replacement, and insert species 𝑠
back to selected empty sites. All possible combinations of choices
are selected with equal probability (𝑃 =

∏

𝑢𝑠>0 𝑢𝑠!∕𝑈 !). Propose
the resulting occupancy state 𝝈′ as the next step in the Markov
chain.

Note that the procedure above can result in an asymmetry between
he exchange proposal probability from 𝝈 to 𝝈′ and the inverse proposal
robability from 𝝈′ back to 𝝈. Such a proposal asymmetry can be
alanced by multiplying with a composition dependent importance
actor to adjust the acceptance probability as given by Eq. (4), such
hat detailed balance is ensured and the correct distribution is reached
see Supplementary Information for a detailed derivation),

𝝈𝝈′ = min

{

1,
𝜃𝝈′−𝒖

∏

𝑢𝑠≠0 𝑛𝑠!

𝜃𝝈𝒖
∏

𝑢𝑠≠0(𝑛𝑠 + 𝑢𝑠)!
exp

[

− 1
𝑘𝐵𝑇

(

𝛥𝐸𝝈𝝈′ −
∑

𝑠
𝜇𝑠𝑢𝑠

)]}

.

(4)

In addition to table exchanges which change the composition, a
ortion (0 ≤ 𝑤 < 1) of canonical swaps can also be mixed in the pro-
osal. These canonical swaps can directly transfer between occupancies
nder the same composition with much less computational cost than
able exchanges and are added to help explore occupancies with the
ame composition more efficiently, rather than having to do so with
combination of table exchanges. In the numerical results section, we
ill illustrate the importance of hyper-parameter 𝑤 in the TE method.

.2. Square-charge bias method

Proposing a table-exchange step and computing its energy change is
ore time-consuming compared to single-species exchanges, therefore

t is desirable to find a method using single-species exchanges that
till conserves charge balance. In the square-charge bias (SCB) method,
e use single-species exchanges to span all occupancies regardless of

harge balance. States in the Markov chain are allowed to leave charge-
alance, however, a penalty proportional to the square of the net charge
3

s added to the Hamiltonian to drive the sampled configurations back v
to charge balance. The acceptance probability of each single-species
exchange step is evaluated using the following penalized Hamiltonian

𝐻𝜇,𝜆(𝝈) = 𝐸(𝝈) −
∑

𝑠
𝜇𝑠𝑛𝑠 + 𝜆𝑘𝐵𝑇𝐶(𝝈)2, (5)

where 𝐸(𝝈) is the energy of occupancy 𝝈 computed from CE. The charge
penalty factor 𝜆 > 0 is a hyper-parameter in the SCB method, and 𝑘𝐵𝑇
is included explicitly in the penalty to keep 𝜆 dimensionless. 𝐶(𝝈) is the
et charge of occupancy 𝝈

(𝝈) =
∑

𝑠
𝐶𝑠𝑛𝑠. (6)

In an SCB run, a simulation starts from a charge-balanced state.
fter reaching thermal equilibration, from all states in the equilibrated
ample, we compute the average of physical quantities with only
harge-balanced states (i.e., states with 𝐶(𝜎) = 0). In doing so, the
harge-balance constraint is rigorously satisfied in the estimation of
hysical quantities. Furthermore, since when 𝐶(𝝈) = 0 the penalized
amiltonian will be equal to the physical Hamiltonian, 𝐻𝜇,𝜆(𝜎) =
(𝝈) −

∑

𝑠 𝜇𝑠𝑛𝑠, the true semigrand-canonical distribution is recovered
y using charge-balanced states only. The effect of the hyper-parameter
on SCB is demonstrated in the numerical results section.

.3. Comparing computational efficiency of sampling methods

If a CE-MC algorithm has hyper-parameters, it is desirable to opti-
ize them such that the thermodynamic properties can be estimated

ccurately with minimal computational cost. To estimate the ensemble
verage 𝜃 of a physical quantity 𝜃, a Markov chain of states is generated

using CE-MC, and at each step 𝑝, the value of 𝜃 for the current
configuration is recorded as 𝜃𝑝. We denote 𝜃[𝑝,𝑞] as the mean of 𝜃 in a
block from step 𝑝 to step 𝑞. When using the SCB method, block means
re computed using only charge-balanced states in each block. After
hermal equilibration, we define the block mean variance at block length
, Var(𝜃𝐿), as the variance of the block means 𝜃[𝑝,𝑝+𝐿], 𝜃[𝑝+𝐿,𝑝+2𝐿],… for

blocks of 𝐿 samples. The block mean variance can be used as a measure
of uncertainty when estimating 𝜃 using a block mean.

Suppose the true variance of 𝜃 in the ensemble is 𝜏2, then the sam-
pling efficiency based on the property 𝜃 can be defined as follows [53],

eff(𝜃) = 𝜏2

𝐿Var(𝜃𝐿)
. (7)

For ideal independent random sampling, one can expect Var(𝜃𝐿) =
𝜏2∕𝐿, such that eff(𝜃) = 1. In reality, Metropolis samples are always
correlated and the efficiency is expected to be lower than 1, eff(𝜃) < 1.
A CE-MC algorithm with higher sampling efficiency is less correlated
and can thus reduce the uncertainty of estimation to an appropriate
level with fewer sampling steps.

In the TE method, the time cost of a table exchange is signifi-
cantly higher than a canonical swap, such that counting the number
of Metropolis steps does not accurately reflect the computational cost.
In this work, we use a modified version of Eq. (7) to evaluate the
sampling efficiency. We replace the block length 𝐿 with the average
CPU time spent in each block 𝑇 𝐿. 𝑇 𝐿 is divided by the average CPU
time 𝛿𝑡 spent in a single-species exchange, such that the efficiency value
of algorithms is dimensionless, and can be compared regardless of the
hardware used:

eff 𝑡(𝜃) =
𝜏2𝛿𝑡

𝑇 𝐿Var(𝜃𝐿)
. (8)

e define eff 𝑡(𝜃) in Eq. (8) as the computational efficiency for the
roperty 𝜃. We use eff 𝑡(𝜃) for benchmarking the proposed algorithms
nder varied hyper-parameters. Additionally, since the true ensemble
ariance 𝜏2 can never be accessed a-priori, we estimate 𝜏2 with the
ariance of 𝜃 in the whole thermally equilibrated sample.
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2.4. Choosing chemical potentials

In the semigrand-canonical ensemble, the probability of a specific
configuration 𝝈 at temperature 𝑇 is proportional to the following

oltzmann factor

(𝝈) ∝ exp

(

−
𝐸 −

∑𝑆−1
𝑠=1 𝜇̃𝑠𝑛𝑠

𝑘𝐵𝑇

)

, (9)

where 𝜇̃𝑠 = 𝜇𝑠 − 𝜇𝑆 is the relative chemical potential of species 𝑠 with
espect to a given species 𝑆, and 𝜇𝑠 is the chemical potential of species
.

When the occupying species carry charge, a charge-balance con-
traint (Eq. (2)) must be enforced, and the number of independent
egrees of freedom in chemical potential values are decreased to 𝑆 −2.
ubstituting Eq. (3) into Eq. (9), the probability of configuration 𝝈
nder a charge-balance constraint is

(𝝈) ∝ exp

(

−
𝐸 −

∑𝑆−2
𝑖=1 𝜇̂𝑖𝑥𝑖

𝑘𝐵𝑇

)

, (10)

where 𝒗𝑖 is an integral basis vector of compositions in Eq. (3), 𝜇̂𝑖 =
𝑆
𝑠=1 𝜇𝑠𝑣𝑖𝑠 is the total change of chemical potentials for moving the

omposition one step towards basis vector 𝒗𝑖, and 𝑥𝑖 is the number of
teps moved towards direction 𝒗𝑖. We refer to 𝜇̂𝑖 as the basis exchange
otential in direction 𝒗𝑖.

In the TE method, once all 𝑆 − 2 basis exchange potentials 𝝁̂ are
elected, one can arbitrarily set chemical potentials (𝜇0,… , 𝜇𝑠,…) for
ach species as long as the relations

̂𝑖 =
𝑆
∑

𝑠=1
𝜇𝑠𝑣𝑖𝑠 (𝑖 = 1,… , 𝑆 − 2) (11)

re satisfied. However, in the SCB method, an extended semigrand-
anonical ensemble is sampled without charge-balance constraint, re-
ulting in a penalized probability distribution

(𝝈) ∝ exp

(

−
𝐸 + 𝜆𝑘𝐵𝑇𝐶2 −

∑𝑆−1
𝑠=1 𝜇̃𝑠𝑛𝑠

𝑘𝐵𝑇

)

, (12)

in which the probability to sample a charge-balanced configuration
implicitly depends on the 𝑆 − 1 relative chemical potentials 𝝁̃, and the
fficiency of the SCB method is thus affected. In order to maximize the
fficiency of SCB, one should optimize the following objective function
o determine the chemical potential of each species:
∗, 𝜆∗ = argmax

𝝁,𝜆
eff 𝑡(𝝁, 𝜆)

𝑠.𝑡. 𝜇̂𝑖 =
𝑆
∑

𝑠=1
𝜇𝑠𝑣𝑖𝑠 (𝑖 = 1,… , 𝑆 − 2).

(13)

n practice, it is possible to simplify the problem above with some
ompromise in optimality. For example, in Eq. (13), one can fix the
enalty factor 𝜆 to an empirical value (e.g. 𝜆 = 1.0) and only search for
ptimal chemical potentials. One can also replace the objective function
ith transfer rates, as will be discussed in Section 3.2.

. Numerical results

In this section, we demonstrate the influence of the hyper-
arameters on the computational efficiency and thermal equilibration
n the TE and SCB methods. We performed CE-MC simulations in

disordered rocksalt system. A rocksalt crystal structure is a basic
rototype of ionic materials consisting of an FCC cation and an FCC
nion sub-lattice, mimicking the basic chemistry of some novel Li-
on cathode systems which have been modeled with CE-MC in recent
tudies [54–56]. In the system used, Li+, Mn3+, Zr4+ are distributed
n the cation sub-lattice, and O2−, F− are present on the anion sub-
attice. We refer to this system as LMZOF. The primitive cell of the
4

LMZOF system is presented in Fig. 2(a) and the corresponding exchange
directions are shown in Fig. 2(b).

We performed simulations for the TE and SCB methods under
various hyper-parameters 𝑤 and 𝜆. After thermal equilibration, we
calculated the computational efficiencies based on Eq. (8) for the
following quantities: (1) 𝐸 (configurational energy per super-cell),
(2) 𝑥LiMnO2

(atomic percentage of LiMnO2) and (3) 𝑥Li2ZrO3
(atomic

percentage of Li2ZrO3). To discuss how the hyper-parameters 𝑤 and
𝜆 affect the computational efficiency and thermal equilibration in the
TE and SCB methods, we designed two simulation experiments: (1)
one at 𝑇 = 5000 K to simulate the system in a state of complete
solubility and (2) another at 𝑇 = 2000 K to simulate the system in a
single phase (Li2ZrO3). In experiment (1), the sampling efficiencies are
plotted as a function of hyper-parameters 𝑤 and 𝜆. In experiment (2),
the thermal equilibration process was demonstrated with simulation
trace plots, which showed the value of thermodynamic properties (such
as the composition and the configuration energy) as a function of
the simulation step. The chemical potentials used in experiments (1)
and (2) are chosen using the strategies described in Section 2.4. The
chemical potential values and additional details of these simulations
are provided in the Supplementary Information.

3.1. Simulations with table exchange

In the TE method, the parameter 𝑤 tunes the ratio of table ex-
changes to canonical swaps, where only table exchanges can explore
different compositions. Most physical systems have a critical tempera-
ture 𝑇𝑐 (or a series of critical temperatures) below which they phase
separate into phases of distinct compositions (compounds or elemental
states). Above 𝑇𝑐 , complete solubility can be found. Under such circum-
stances, a low 𝑤 will include more table exchanges to explore a wide
distribution of compositions and consequently gives better sampling
efficiencies. Fig. 3(a) and (b) shows the TE computational efficiency
under 5000 K, where all the components in LMZOF are fully miscible
(see Supplementary Information). The computational efficiencies for
the configurational energy and compositions are both maximized at
𝑤 = 0%, indicating that no canonical swaps should be included.

Nevertheless, it is not always safe to fully exclude canonical swaps.
Below the critical temperature, the semigrand-canonical ensemble dis-
tribution is usually concentrated near the composition of a single
phase; thus, the ability to explore different occupancies within the same
composition is more important (namely, the ability of canonical state
transfers). It is still possible to achieve a canonical transfer with only
table exchanges by performing multiple exchanges when the sum of
all exchange directions equals to zero. However, besides being com-
putationally more expensive than a canonical swap, table exchanges
perturb many sites simultaneously and are therefore more likely to
propose energetically unfavorable configurations, which can result in a
lower acceptance ratio. As a result, having too low of a canonical swap
percentage 𝑤 can reduce the computational efficiencies, and lead to
slow thermal equilibration, especially at a relatively low temperature.
Such an example is illustrated in Fig. 4(a) and (b) in LMZOF at 2000 K.
Even though the simulation was able to reach equilibrium at a single
phase composition (Li2ZrO3, Fig. 4(a)) for 𝑤 = 5% (red), compared to
𝑤 = 50% (green), it failed to equilibrate to the correct ground-state
configuration (the layered structure, shown in Fig. 4(b)) within a time
limit of 3000 s.

3.2. Simulations with square-charge bias

In the SCB method, the penalty factor 𝜆 controls the trade-off
between the fraction of charge-balanced states in the Markov chain
and the Metropolis acceptance probability. Fig. 3(c) and (d) show the
sampling efficiency in LMZOF at 5000 K. Optimal efficiency is found at
an intermediate 𝜆 value (𝜆 = 0.2). When the penalty 𝜆 is too small, the
simulation can wander too far from charge-balanced states, and barely
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Fig. 2. Primitive cell and exchange directions in the LMZOF disordered rocksalt. (a) Rocksalt primitive cell of LMZOF, with partial occupancies of Li+, Mn3+, Zr4+ on the cation
sub-lattice and O2−, F− on the anion sub-lattice. (b) Compositions of LMZOF in a super-cell of size 6 (6 cation sites and 6 anion sites). The x-, y-, and 𝑧-axis represent the amount
of Li+, Mn3+ and O2−, respectively. The amount of Zr4+ and F− can be computed by satisfying site number conservation on the cation and the anion sub-lattices. The purple dashed
grid in three dimensions includes arbitrary compositions without enforcing charge balance. The solid grid on the green plane includes charge-balanced compositions only. Basis
vectors 𝒗1 and 𝒗2 are marked with dark green and red arrows, respectively. The reaction formulas corresponding to 𝒗1 and 𝒗2 are listed on the top right. The inverse directions
are not displayed.

Fig. 3. (a)–(b) TE and (c)–(d) SCB computational efficiencies in the LMZOF system at 𝑇 = 5000 K as a function of the canonical swap percentage 𝑤 and the charge penalty factor
𝜆. For each 𝑤 and each 𝜆, three simulations were run starting from different initial states. The average of three measurements for each 𝑤 and each 𝜆 are connected with lines.
(a) TE computational efficiencies for energy (eff 𝑡(𝐸), green dots and line) as a function of 𝑤. (b) TE computational efficiencies for sampling the LiMnO2 composition (eff 𝑡(𝑥LiMnO2

),
red solid triangles and solid line) and the Li2ZrO3 composition (eff 𝑡(𝑥Li2ZrO3

), red hollow triangles and dashed line) as a function of 𝑤. (c) SCB computational efficiency for energy
(eff 𝑡(𝐸), green dots and line) as a function of 𝜆. (d) SCB computational efficiency for sampling the LiMnO2 composition (eff 𝑡(𝑥LiMnO2

), red solid triangles and solid line) and the
Li2ZrO3 composition (eff 𝑡(𝑥Li2ZrO3

), red hollow triangles and dashed line) as a function of 𝜆.
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Fig. 4. (a)–(b) Trace plots of TE simulations in LMZOF system, at 𝑇 = 2000 K, 𝑤 = 5% and 50%; and (c)–(d) SCB simulations at 𝑇 = 2000 K, 𝜆 = 0.1 and 𝜆 = 2.0. The simulations
started from the same occupancy configuration. In (a) and (c), the simulated trajectory of compositions is plotted in the LMZOF phase space, and the initial state composition is
marked with a black triangle. In (c) and (d), the simulated trajectories of the energy (𝐸 − 𝜇𝑁) are plotted as a function of the simulation time. The blue dashed baseline shows
the energy of the Li2ZrO3 ground state. (a) Simulated trajectory of composition using 𝑤 = 5%(red) and 50%(green) in TE. (b) Simulated trajectory of energy with the chemical
potential subtracted (𝐸 − 𝜇𝑁), using 𝑤 = 5%(red) and 𝑤 = 50%(green) in TE. (c) Simulated trajectory of compositions using 𝜆 = 2.0(red) and 0.1(green) in SCB. (d) Simulated
trajectory of energy with the chemical potential subtracted (𝐸 − 𝜇𝑁), using 𝜆 = 2.0(red) and 𝜆 = 0.1(green) in SCB.
revisits charge-balanced configurations. Too large of a 𝜆 value lim-
its low-barrier pathways toward new charge-balanced configurations.
Near either of these extreme circumstances, the sampling efficiency of
SCB decreases. Fig. 4(c) and (d) show at 𝑇 = 2000 K an overly large
charge penalty 𝜆 = 2.0 (red) causes slow configurational equilibra-
tion to the layered Li2ZrO3 ground state due to the aforementioned
limitation to access low-barrier pathways.

In the SCB approach, we can define the occupancy transfer rate (𝑟𝑜)
and the composition transfer rate (𝑟𝑐) as follows:

𝑟𝑜 =
Count of occupancy transfers

CPU time elapsed
,

𝑟𝑐 =
Count of composition transfers

CPU time elapsed
.

(14)

An occupancy transfer is counted when the Markov chain arrives at
a new charge-balanced occupancy different from the last recorded
charge-balanced state. A composition transfer is counted when a
charge-balanced composition different from the last recorded composi-
tion is reached.

In Fig. 5, we computed the transfer rates in the SCB simulations
at 5000 K in LMZOF. The maximum transfer rates occur at 𝜆 = 0.5.
When compared to the sampling efficiency trend in Fig. 3(c) and (d),
the efficiency at 𝜆 = 0.5 is only 20% lower than the optimal efficiency
taken at 𝜆 = 0.2. Compared to the computational efficiency, the transfer
rates can be tracked step by step without waiting for multiple blocks
of the Markov chain to complete. They can also give a satisfactory
estimation of the optimal 𝜆. Therefore, when using the SCB method,
one may instead choose an optimal 𝜆 to maximize the transfer rates as
an alternative to maximizing the computational efficiency.
6

Fig. 5. Transfer rates of occupancy (𝑟𝑜, solid line) and composition (𝑟𝑐 , dashed line)
in SCB simulations of LMZOF at 𝑇 = 5000 K, using varied 𝜆.

3.3. The limitation of TE with a large table-exchange size

As illustrated in Fig. 3, the maximum computational efficiencies of
the TE method and the SCB method are close in LMZOF (eff 𝑡(𝐸) ≈
1.25 × 10−4, eff 𝑡(𝑥LiMnO2

) ≈ 4 × 10−4 and eff 𝑡(𝑥Li2ZrO3
) ≈ 1.5 × 10−4).

Accordingly, the TE method is shown to have a similar performance as
the SCB approach in a system with small table-exchange sizes (e.g., in
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Fig. 6. Trace plots of TE simulations in LNMTOF system at 𝑇 = 1600 K, 𝑤 =
20% (yellow), 40% (purple) and 80% (red); and of an SCB simulation at the same
temperature and 𝜆 = 1.0 (green). (a) Simulated trajectory of the energy subtracted
by chemical potentials (𝐸 − 𝜇𝑁) as a function of the simulation time. (b) Simulated
trajectory of the LiF composition (𝑥LiF) as a function of the simulation time.

LMZOF, 𝑈 ≤ 3). However, when the exchange table involves exchanges
of too many sites, the sampling efficiency of the TE method can be
limited.

To illustrate this point, we further studied a disordered rocksalt-like
system in the chemical space of 𝑥 ⋅ LiF + (1 − 𝑥) ⋅ LiNi2+1∕3Mn3+1∕3Ti

4+
1∕3O2

(0 ≤ 𝑥 ≤ 1, referred as LNMTOF). The system consists of Li+, Ni2+,
Mn3+, Ti4+ on the cation sub-lattice, and O2−, F− on the anion sub-
lattice, with an additional requirement that 𝑛Ni2+ = 𝑛Mn3+ = 𝑛Ti4+ .
To move the composition by adding/removing fluorine with charge-
neutrality, the minimal basis exchange table in LNMTOF contains the
following exchanges (𝑈 = 9):

6 LiF ⟺ Li3NiMnTiO6, (15)

which is equivalent to the reaction:

3Li+ + 6F− ⟺ Ni2+ +Mn3+ + Ti4+ + 6O2−. (16)

Fig. 6(a) and (b) shows the trajectories of energy subtracted by
chemical potentials (𝐸 − 𝜇𝑁) and LiF atomic percentage (𝑥LiF) sim-
ulated at 𝑇 = 1600 K, using the TE method with varied 𝑤 and the
SCB method with 𝜆 = 1.0 (see details in Supplementary Information).
Regardless of the value of 𝑤, all TE simulations are unable to reach
the ground-state LiF as suggested by the SCB method. The transfers
between compositions are nearly prohibited in TE, suggesting a very
7

Fig. 7. Distribution of the effective perturbation energy (𝛥𝐻̂) of three types of
Metropolis steps: canonical swaps (blue), table exchanges (red), and single exchanges
(green). Metropolis steps were applied to 10 snapshot LNMTOF configurations drawn
from the TE simulation at 𝑇 = 1600 K, 𝑤 = 40%. In canonical swaps, 𝛥𝐻̂ = 𝛥𝐸.
In table exchanges, 𝛥𝐻̂ = 𝛥(𝐸 − 𝜇𝑁). In single-species exchanges (SCB), 𝛥𝐻̂ =
𝛥(𝐸 − 𝜇𝑁 + 𝜆𝑘𝐵𝑇𝐶2), where 𝑇 = 1600 K and 𝜆 = 1.0.

low acceptance ratio of table exchanges. Ten random configurations
were drawn as snapshots from the Markov chain generated by the
TE simulation at 𝑤 = 40%, to which three types of Metropolis steps
(canonical swaps, table exchanges, single exchanges) were applied to
calculate the effective perturbation energies (𝛥𝐻̂). The distributions of
𝛥𝐻̂ with each type of Metropolis steps are shown in Fig. 7. The table
exchanges (red) in LNMTOF show significantly higher perturbation
energy compared to the canonical swaps (blue) and single exchanges
in the SCB method (green). This is because many sites are required to
exchange simultaneously. The large energy perturbation in TE prohibits
effective transfer between different compositions and explains the slow
thermal equilibration in the TE method. Therefore, we suggest using
the SCB method instead of the TE method for the acceptable efficiency
of thermal equilibration when large-sized exchanges are included.

4. Discussion & summary

We have introduced two general methods to perform semigrand-
canonical CE-MC simulations with a charge-balance constraint and CE
models of arbitrary complexity, enabling thermodynamic calculations
for ionic materials with configurational disorder.

The effect of the fraction of canonical exchanges 𝑤 mixed into
the semigrand canonical trajectory, and the charge penalty factor 𝜆
in the TE and SCB methods are presented. In the TE method, using
a proper 𝑤 is essential to efficiently explore and equilibrate among
same-composition configurations. In the SCB method, the penalty factor
𝜆 controls the trade-off between the ability to revisit charge balance
and the ability to leave charge balance to explore new states. We
show that the hyper-parameters 𝑤 and 𝜆 can be optimized to improve
computational efficiency.

In general, the SCB method is mathematically more straightforward,
easier to implement, and less vulnerable to thermal equilibration prob-
lems at a large table exchange size (𝑈) compared to the TE method.
However, when the table exchange size is small, the TE method is a
useful method due to its simplicity as the optimization of chemical
potentials (Eq. (13)) is not necessary, and its competitive sampling
efficiency to the SCB method. We recommend the following strategy
to apply TE and SCB in practical CE-MC calculations:
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1. Choose the proper method according to the size of table ex-
changes (based on the exchange size 𝑈). When the size of table
exchange is large (for example, 𝑈 > 4), TE should be used
cautiously as it may lead to low sampling efficiency and slow
thermal equilibration.

2. Set the chemical potentials as discussed in Section 2.4.
3. Scan a series of 𝑤 or 𝜆 coarsely to benchmark the computational

efficiency. For example, a series of 𝑤 = 90%, 70%, 50%, 30%, and
10%; or a series of 𝜆 = 0.1, 0.2, 0.5, 1.0 and 2.0 may be sufficient.

4. Perform short trial simulations with each 𝑤 or 𝜆 at the temper-
ature and chemical potentials of interest. Record the trace of
properties along with the CPU time elapsed. By inspecting the
convergence of 𝐸−𝜇𝑛 and compositions, hyper-parameter values
that result in slow thermal equilibration can be ruled out. Search
among the remaining values of 𝑤 or 𝜆, in order to maximize the
computational efficiency (eff 𝑡).

5. Continue the simulation with the optimal hyper-parameter value
and generate the formal MC samples.
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