
ARTICLE OPEN

Semi-supervised machine-learning classification of materials
synthesis procedures
Haoyan Huo1,2, Ziqin Rong1, Olga Kononova1, Wenhao Sun 2, Tiago Botari 1,2, Tanjin He 1,2, Vahe Tshitoyan 2,3 and
Gerbrand Ceder1,2

Digitizing large collections of scientific literature can enable new informatics approaches for scientific analysis and meta-analysis.
However, most content in the scientific literature is locked-up in written natural language, which is difficult to parse into databases
using explicitly hard-coded classification rules. In this work, we demonstrate a semi-supervised machine-learning method to classify
inorganic materials synthesis procedures from written natural language. Without any human input, latent Dirichlet allocation can
cluster keywords into topics corresponding to specific experimental materials synthesis steps, such as “grinding” and “heating”,
“dissolving” and “centrifuging”, etc. Guided by a modest amount of annotation, a random forest classifier can then associate these
steps with different categories of materials synthesis, such as solid-state or hydrothermal synthesis. Finally, we show that a Markov
chain representation of the order of experimental steps accurately reconstructs a flowchart of possible synthesis procedures. Our
machine-learning approach enables a scalable approach to unlock the large amount of inorganic materials synthesis information
from the literature and to process it into a standardized, machine-readable database.
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INTRODUCTION
Over the last 30 years, advances in computational materials
science have led to tremendous successes in materials design,
with dozens of computationally designed novel compounds,1,2

and on-demand availability of ab initio predicted properties.3

However, the materials discovery pipeline remains bottlenecked
by the challenges of experimental synthesis, which can require
months of trial-and-error before a novel compound can be made.
At present, it remains difficult to design how to synthesize
predicted materials in a laboratory, or whether or not it is even
possible.4

Current approaches toward understanding and predicting
materials synthesis have involved in situ X-ray diffraction (XRD)
investigations,5,6 ab initio thermodynamic modeling,7–9 classical
thermodynamics perspectives,4 and machine-learning guided
synthesis parameters search.10,11 Recently, exciting applications
of machine-learning methods to retrosynthesis in organic
chemistry are proving to be impactful,12–14 inspiring the applica-
tion of similar methods to predict inorganic materials synthesis.
These machine-learning investigations of organic chemistry
synthesis reactions have been enabled by organic chemistry
reaction databases, such as Reaxys, which include >12 million
single-step reactions. There is currently no analogous database
that comprehensively catalogs the synthesis reactions of inorganic
materials syntheses. However, even limited databases of materials
synthesis reactions can yield valuable insights on the relationships
between synthesis parameters and reaction products, as for
example exemplified by Kim et al.15–17 and others.11,18

To build a comprehensive inorganic materials synthesis
database, synthesis procedures must be classified with high-
resolution at multiple levels: at a high-level, the synthesis

methodology; at an intermediate-level, individual experimental
steps; and at a detailed-level, specific processing parameters. In
principle, we could analyze sentence grammar and keywords to
build a rule-based classification algorithm to identify different
types of synthesis procedures. However, this is impractical, due to
both the notorious ambiguity of natural language19–21 and the
complexity of solid-state chemistry terminology. Statistical classi-
fication algorithms, such as deep-learning neural networks22,23 can
achieve good text classification performances24 with large
amounts of training data.25 However, no large annotated text
data sets to train on exist in materials science or chemistry.
Recent advances in machine-learning research have demon-

strated that semi-supervised learning methods can solve similar
classification problems with much lessannotated data than
supervised learning methods.26–28 Here, we present a semi-
supervised machine-learning approach (that uses a small amount
of labeled data and a large amount of unlabeled data) for the
accurate classification of synthesis procedures as described in
written natural language. Using a body of 2,284,577 articles, we
applied latent Dirichlet allocation (LDA)29 to identify the experi-
mental steps implied in sentences in an unsupervised manner. The
“experimental steps” are grouped as topics and LDA provides a
probabilistic topic distribution for each sentence. To this topic
distribution, we apply the random decision forests (RF) algo-
rithm30—a supervised machine-learning method—to classify
different types of synthesis procedures: solid-state synthesis,
hydrothermal synthesis, sol–gel precursor synthesis, or none of
the above. We demonstrate that the RF models can achieve high
classification performance with training data sets as small as a few
hundred paragraphs, which can be readily prepared by manual
annotation efforts. By combining these unsupervised and
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supervised approaches, our machine-learning algorithm accu-
rately captures the features and subtleties of different synthesis
procedures, with high classification performance, with results that
can be presented in a way that is readily understood and
interpretable by humans. Finally, we construct a machine-learned
flowchart of synthesis procedures, which demonstrates that our
method can build a “machine intuition” of materials synthesis
procedures beyond classification.

RESULTS
Unsupervised learning of synthesis processes
Humans can categorize sentences into topics by recognizing
familiar keywords. However, this objective can be difficult to train
a computer to achieve, because it is impractical to code explicit
rules for keywords of an English vocabulary that is both large
(> 10,000) and open for new materials science/chemistry terms.
Furthermore, in natural language various synonyms can often be
used to represent the same topic, which introduces ambiguity and
complexity into hard-coded rules. LDA29,31,32 is an unsupervised
topic modeling algorithm that observes common keywords over a
large number of papers, then automatically clusters these
synonymous keywords together into “topics”. We applied LDA to
identify topics of synthesis from the scientific literature, and we
demonstrate that the topical grouping is closely related to
conventional experimental classification of synthesis steps.
We first use LDA to identify topic–word distributions, which are

a set of multinomial probability distributions over a cluster of
keywords conditioned on certain topics. To demonstrate, in Table
1 we list two topics learned by LDA. (A complete list of all 200
topics can be found in Table S1.) We first show in Table 1 some
representative sentences that we consider to discuss similar
topics. From a collection of thousands of unlabeled sentences,
LDA learns topic–word distributions using a Bayesian inference
method. As shown in the second column of Table 1, the keywords
(words of highest probability) of topics match the vocabulary
often used by chemists to discuss each topic, making it possible
for chemists to interpret the learned topics. For example, in Table
1, we interpret topic T1 as “(ball-)milling”, and topic T2 as “high
temperature sintering”. We emphasize that the topic names, “(ball-
)milling” and “sintering”, are assigned by us for the sake of
convenience, and the choice of names does not affect the
topic–word distributions learned by LDA.
The distribution of topics in a sentence infers a

“document–topic” distribution, which is quantified by the prob-
ability that each topic appears in a sentence. For example, in a

sentence excerpted from our database, “the dried powders were
calcined twice at 850 °C for 2 h and then ball milled again for
8 h.”,33 39 and 60% of the words discuss the LDA-learned topics T1
and T2, respectively. LDA then interprets this sentence as having
two topics, corresponding to the experimental steps “ball milling”
and “sintering”. More examples can be found in Table S2. Using
document–topic distributions, a computer is able to quantitatively
identify topics relevant to experimental steps in sentences, which
are then used as input features for synthesis procedure classifiers.

Supervised classification of synthesis methodologies
LDA has now been used to automatically identify various
topic–word distributions, which we labeled as specific experi-
mental steps, for example, sintering, grinding, etc. These
individual steps are subprocesses of an overall synthesis
methodology, such as solid-state synthesis, hydrothermal, sol–gel
precursor synthesis, etc. Based on the topic distributions learned
by LDA, the machine is next trained to classify which of these
three synthesis methodologies a synthesis paragraph
corresponds to.
To build the classifier, we use the random forest (RF)

algorithm,30,34 which is a supervised machine-learning algorithm
that uses an ensemble of decision-making trees to make
classifications. We constructed a training set of synthesis
paragraphs that was annotated by synthesis experts, which
consists of 1000 training paragraphs for each of the three types
of synthesis (solid-state, hydrothermal, and sol–gel precursor
synthesis) as well as 3000 randomly sampled negative paragraphs
from the database that do not contain any of the above three
synthesis procedures. To provide input features for RF, we use the
“topic n-gram”,35 which represents the sequence of LDA-derived
topics in adjacent sentences within a paragraph. We used the
scikit-learn Python package36 to construct learning curves to
understand how much training data is needed by the RF
algorithm.
Figure 1a gives the learning curves of the RF algorithm, showing

the F1 score versus the amount of training data. The RF algorithm
reaches high F1 scores of ~90% when the training data set size is
>3000, but surprisingly, the models can consistently converge to
>80% F1 scores even when the training data set is as small as a
few hundred paragraphs. These training data sets are small
enough that they can be readily prepared by manual annotation
efforts, indicating that LDA+ RF methods are practicable
machine-learning methods for classification problems of similar
complexity. As summarized in Fig. 1b, the recall and precision
scores are also >90%, signifying that our RF classification model is

Table 1. Two topics (topic–word distributions) selected from 200 topics learned by LDA using sentences in our database

Sample sentences Words of highest probability Topics

“As-received ZrB2 powder was mixed with 2 wt% B4C powder (4.5 vol%) and 1wt% carbon
(2.5 vol%) in acetone by ball milling for 24 h using WC media.”44

P(ball)= 0.065
P(milling)= 0.051
P(h)= 0.042
P(milled)= 0.032
P(powder)= 0.031
P(mill)= 0.027
…

T1 (ball-)milling

“The Al powder was first ball milled in an atmosphere of supra-pure hydrogen for removing
the small amount of oxide film on the surface.”45

“The solid product obtained was filtered, dried at 110 °C and finally calcined in air at 550 °C
for 6 h at a heating rate of 1 °C/min.”46

P(°C)= 0.139
P(h)= 0.104
P(air)= 0.038
P(calcined)= 0.035
P(dried)= 0.028
P(K)= 0.016
…

T2 sintering

“Finally, the solid was calcined in air from RT to 500 °C at a heating rate of 2 °Cmin−1 and
maintained for 4 h, which led to the formation of the MgO-Al2O3 support.”47

Each topic is represented by a multinomial probability distribution over words. By interpreting the keywords (words of highest probability), we assign a human
comprehensible label for each topic. Sample sentences from four articles44–47 are used to demonstrate different topics
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robust against false-positive and false-negative classification
errors.
The RF algorithm consists of an ensemble of similar decision

trees, which ultimately vote together on the final synthesis
classification. Using hyperparameter optimization, we determined
that 20 RF trees give the best model performance (See Methods
section and Fig. S2). To visualize how our model classifies different
types of synthesis procedures, we show in Fig. 2a one out of the
20 learned decision trees in our RF model. In Fig. 2a, the decision
tree starts from the topmost node, and branches into one of two
child nodes according to whether certain topic n-grams exist in a
paragraph, as defined by the criterion of each node. We highlight
a representative branch from Fig. 2a in yellow, and show the
enlarged branch in Fig. 2b. For a paragraph that has topic
“cooling-1” after topic “autoclaving” in two consecutive sentences,
the decision tree changes its classification of the synthesis method
from “none of the above” to the “hydrothermal” category. Because
this “hydrothermal” node does not have any child nodes, no more
decisions will be made and the decision tree predicts the
paragraph as having a hydrothermal synthesis procedure.
In many ways, the RF algorithm classifies materials synthesis

procedures similarly to how a solid-state chemist would—by
looking for patterns of experimental procedures. For example,
“shake-and-bake” is a common pattern for solid-state synthesis. If
a paragraph is organized as “mix the precursors and then sinter
the mixture”, then one would likely classify it as solid-state
synthesis. This same classification decision can be found in our
computer-generated decision trees, where each node contains a
pattern of experimental steps (represented by LDA topic results),
such as (“[ball-]milling”→ “sintering”) in the third node of Fig. 2b.
Moreover, our model represents patterns of synthesis as topic
pairs, and we can study how words affect the detection of such
patterns. As demonstrated in Fig. 2b, when a paragraph contains
more keywords of topics “(ball-)milling”, “(hot-)pelletizing”, and
“annealing” than keywords of topics “sol formation” and “solution

heating”, such as “milling”, “pressed”, and “annealed”, chances are
that our model predicts solid-state synthesis instead of sol–gel
precursor synthesis. In general, the decision trees largely resemble
the underlying procedures of materials synthesis methods,
explaining why the RF algorithm can automatically pick out
human-understandable features and weigh them accordingly.

Constructing a flowchart of synthesis procedures
In materials synthesis procedures, experimental steps do not
appear randomly—they usually follow a certain procedural order,
in patterns that are specific to different types of synthesis
methodologies. Similarly, LDA-learned topics do not appear in

a)

b)

Category

Solid-state 96.9±1.0% 93.4±1.5% 95.1±0.6%
Hydrothermal 97.3±1.0% 98.3±1.0% 97.8±0.6%

Sol-gel precursor 95.5±1.4% 87.0±2.1% 91.0±1.1%

Precision Recall F1

Sol-gelHydrothermalSolid-state

Training datasets Test datasets

300 1k 3k

0.50

0.75

1.00

300 1k 3k 300 1k 3k

Fig. 1 a Learning curves of the RF model demonstrating F1 score
improves with more training data. The red plus and blue cross
symbols represent model F1 scores tested on training data sets and
test data sets, respectively. The shaded areas denote the standard
deviations of the curve. The performance converges to high
F1 scores with training data sets as small as a few hundred
paragraphs. b Precision/Recall/F1 scores of the RF model. The model
was trained using 5000 training paragraphs and cross-validated
using 1000 test paragraphs. Training paragraphs were randomly
drawn from the annotated data set several times to calculate the
standard deviation

None of the above
Solid-state
Hydrothermal

Sol–gel precursor

One paragraph

No
(”autoclaving”→

”cooling-1”)

(”autoclaving”→
“centrifuging”) No

(”[ball-]milling”→
“sintering”) No

(”reaction introduction”)
Yes

(”[ball-]milling”)
No

(”[hot-]pelletizing”)
Yes

(”sol formation”)
Yes

(”sintering”→
“[hot-]pelletizing”)

(”annealing”)

(”solution heating”)

No

No

No

...

...
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...

...

Start
a)  entire tree

b)  enlarged branch

Fig. 2 a One of 20 decision trees learned by RF. b One particular
branch. Starting from the topmost node, branch is made when
certain topic pairs exist in a paragraph. When no branch can be
made, a terminal node predicts the type of synthesis. A RF classifier
consists of many trees and selects the majority of predictions
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random sequences in the written synthesis paragraphs. By data-
mining the transition probability from one LDA topic to another
between adjacent sentences, we can construct a Markov chain
representation of how various experimental steps proceed into
others. We visualize these Markov chains as synthesis flowcharts,
shown in Fig. 3, using a directed graph consisting of nodes and
directed edges, where a node represents an experimental step,
and an edge represents a transition from one experimental step to
another one.
The computer-generated flowchart demonstrated in Fig. 3

largely summarizes three types of synthesis procedures. In Fig. 3,
core experimental steps of syntheses are found, for example, the
experimental steps “mixing”, “(ball-)milling”, “(hot-)pelletizing”,
and “sintering” (plus “cooling-2” and “annealing”) are all found in
the solid-state synthesis category, which matches a chemist’s
intuition of solid-state synthesis. The algorithm also learns
important ordering information, for example, “(hot-)pelletizing”
usually follows “(ball-)milling”, but “(ball-)milling” never follows
“(hot-)pelletizing”. The edges between “sintering” and “(hot-)
pelletizing” or “(ball-)milling” are found in both directions,
indicating it is a common practice to regrind and pelletize
sintered products in solid-state synthesis. In addition, the
algorithm automatically captures subtleties regarding syntheses,
for example, that “solution heating” is an intermediate step
between “sol formation” and “sintering”, which physically is
because gel-like precursor states are formed when the particle
density in the colloid is increased by evaporating liquid solvent;
whereas that “pH adjustment” is an optional step between
“aqueous mixing” and “autoclaving”, as sometimes, but not
always, the formation of the final product depends on specific
pH values. Figure 3 reproduces common experimental processes
from different synthesis procedures, because LDA allows compu-
ters to understand individual experimental steps, and the Markov
chain construction enables general procedural orderings to be
learned as they were recorded in synthesis paragraphs.

DISCUSSION
Much of the technical content in solid-state chemistry papers is
locked-up in the ambiguities of written natural language. Topic
modeling algorithms can teach computers to automatically
elucidate structure and meaning from these complicated written
texts. In this work, we combined unsupervised (LDA) and
supervised (RF) machine-learning algorithms to accurately

categorize different types of inorganic materials synthesis
procedures by topic keywords. LDA can, without any human
supervision, automatically learn keywords associated with specific
experimental steps in materials synthesis procedures, which
produces topic representations of sentences written in natural
language. Using these topic representations, we used RF
algorithms to classify different synthesis methods with high
accuracy, using a relatively modest number of manually annotated
synthesis paragraphs. Finally, a Markov chain representation of
synthesis processes enables the construction of flowcharts, which
capture many of the subtleties involved in inorganic materials
synthesis. Because little annotation effort is required, our machine-
learning classifier can be readily scaled up to categorize and
interpret the millions of solid-state chemistry papers from the
scientific literature, which can then be data-mined and analyzed
using large-scale informatics tools.
LDA helps achieve high classification performance by reducing

the ambiguity of natural language. Oftentimes in English, one
meaning can be expressed using different synonyms. This
ambiguity of English is also very common in the synthesis
literature. For example, “grinding” and “milling” are often used
interchangeably in experiment descriptions. LDA is designed to
solve the ambiguity problem by identifying the same topic (for
example, topic “(ball-)milling” in Table 2) in different ways of
expression. A major advantage of LDA is that it can learn topic
representations without human input. This is in contrast to other
NLP methods, such as named-entity recognition (NER) or sentence
dependency parsing used in similar works,15,37 which are
supervised classification models that require training on all
different synonyms with the same meaning. This training is
challenging owing to the limited availability of data sets in
materials science with labeled text, meaning there are not enough
cases for supervised learning. Another risk of neural networks
trained to classify paragraphs is that the large number of
parameters could lead to overfitting, and they would be unable
to classify paragraphs that use synonyms for synthesis process
that were not included in the training set.
One well-known limitation of LDA is that it has poor

performance when modeling topics in short sentences or
paragraphs.38 We observed some incorrect classification results
for short paragraphs, but these occurrences are rare, as it is nearly
impossible to describe a full synthesis procedure in only a few
words, and it is easy to filter all short paragraphs by the length of
word sequences.
From the perspective of building an inorganic materials

synthesis database, we argued that three levels of information
are required: high-level classification of synthesis methodologies,
intermediate-level experimental steps, and detailed-level proces-
sing parameters. We have shown that LDA is well-poised to learn
the high-level synthesis methodologies and the intermediate-level
experimental steps. However, LDA should be less capable of
identifying the detailed-level processing parameters because it is
designed to model topics (collections of common objects, ideas,
facts31), whereas processing parameters appear as single words or
phrases and need to be extracted using word-level algorithms,
such as NER. Nevertheless, LDA is capable of constraining the
problem domain by clustering39 and smoothing40 documents, and
thus promoting performance of NER tasks.41,42

Good examples of mining materials synthesis parameters from
journal articles have been previously shown by Kim et al.,15,16

where they used NER to extract synthesis parameters and applied
LDA as a post-processing analysis to cluster the chemistry of
materials. These algorithms are trained and evaluated on materials
synthesis paragraphs without a specific domain. However, online
journal articles describe a large variety of synthesis methodolo-
gies, such as the solid-state, hydrothermal and sol–gel precursor
syntheses studied in this work, where different domain knowledge
is implicitly assumed, such as the vocabulary of describing

Solid-state

Sol–gel

Hydrothermal Output

sintering

(ball-)milling (hot-)pelletizing

reaction
start

aqueous 
mixing-2

mixing

sol 
formation

pH adjustment

autoclaving

solution
heating

cooling-1

washing
drying

centrifugation
reaction
start-1

aqueous
mixing-1

cooling-2

annealing

Synthesis reaction

Fig. 3 Machine-learned flowchart showing the transition between
experimental steps for different types of synthesis. The topics
associated with the nodes can be found in Table 2 and Table S1.
Edges represent transitions from one step to another, and the
arrows show transition directions. Double-lined edges represent
transitions in both directions. A darker edge indicates a more-
probable transition

H. Huo et al.

4

npj Computational Materials (2019)    62 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



experimental steps (Table 2) and the organization of these steps
(Fig. 3). Proper consideration of the subtle domain knowledge is
essential for machine learning to understand the synthesis
literature in a higher resolution. Our semi-supervised approach
allows paragraphs to be automatically clustered into small sub-
domains of synthesis methodology, which provides a foundation
for codifying domain knowledge and creating a more sophisti-
cated analysis of synthesis information.
Our semi-supervised machine-learning algorithms benefit from

high-classification performance while being trained on data sets
small enough to be manually annotated by individual experts.
Although this work has been a case study specifically for
classifying materials synthesis paragraphs, the applicability of
our method is general. For example, our method can also be used
for extracting materials characterization information, which is a
valuable text source for identifying the phases of synthesized
materials. There are undoubtedly further opportunities to apply
topic modeling methods to extract other important data and
concepts from scientific articles published in materials science and
other fields. We believe that this work gives a blueprint for how
written information, contained in the large body of published
literature, can be extracted and made machine-interpretable.

METHODS
Scientific articles used in this work are journal publications published by
Springer, Wiley, Elsevier, the Royal Society of Chemistry, and the
Electrochemical Society from which we received permissions to download
large amounts of articles. For each publisher, we manually identified all
materials science related journals available for download. A web scraping
engine was built using scrapy (https://scrapy.org/). Only full-text articles
published after 2000 were downloaded, including metadata such as
journal name, article title, article abstract, authors, etc. All data were stored
in a document-oriented database implemented using a MongoDB (https://
www.mongodb.com/) database instance. Because downloaded articles are
in HTML/XML format, which contains irrelevant markups and stylesheets,
we developed a customized library for parsing article markup strings into
text paragraphs while keeping the structures of paper and sections
headings. The current snapshot of the database contains 2,284,577 papers,
from which we used 3,210,525 paragraphs in the experimental sections of
each paper to conduct this research. The experimental sections were
identified by using case-insensitive keyword matching in section headings.
(These keywords are “experiment”, “synthesis”, and their morphological
derivations.)

Plain text paragraphs were segmented into sentences and tokenized
into words using ChemDataExtractor tokenizer,43 which is purposely
trained on scientific corpus to handle abbreviations, chemical formulas,
etc. Lemmatization preprocessing35 was not practiced to keep the
meanings of different word forms such as verb fired and noun fire.
Common English stop-words serving as grammatical function words such
as the, be, on, that were removed from each sentence.
We used the Mallet package32 to train LDA topic models. Two

parameters α and β, which control the Dirichlet prior distribution of the
topic distributions and the words distributions, respectively, were set to α
= 5/N and β= 0.01, where N is the number of topics. Inappropriate
settings of the number of topics downgrade the quality of topics learned
by LDA. By maximizing LDA model probability likelihood,29 we found that
setting the number of topics N= 200 produces the best performance of
the LDA model without overfitting, as demonstrated by Fig. S1.
We used the RF module in the scikit-learn Python package36 to train

classification models. The “topic n-gram” feature is created as indicator
variables for n-topic tuples in consecutive sentences (Ti, Ti+1, …, Ti+n−1).
Each Ti is a topic in the i-th sentence with probability > 0.05. n denotes the
length of the tuple, and we used 1 ≤ n ≤ 3 in our study.
The training data set was annotated by synthesis experts in our research

group and consists of 1000 training paragraphs for each of the three types
of synthesis (solid-state, hydrothermal, and sol–gel precursor synthesis) as
well as 3000 randomly sampled negative paragraphs from the database
that do not contain any of the above three synthesis procedures. We
annotated the data set according to a list of self-consistent definitions
developed by us. These definitions can be found in the supplementary
material. In total, 6000 annotated paragraphs were obtained. When
developing this annotated data set, we found it important to use as few
annotators as possible, as the use of a large number of annotators led to
inconsistencies in annotation due to variations in interpretations on what
each delineates each synthesis method. Part of this ambiguity of the
annotation task is intrinsic. In solid chemistry, there are no formal
definitions of different synthesis methodologies and hybrids of different
methods are sometimes used. The issues with annotation are described in
detail in the supplementary material. We used 10-fold cross-validations to
test the robustness of our model. We ran cross-validation 20 times to
estimate standard deviations of performance scores. In each run, the
training data set contains 5000 samples, and the test data set contains
1000 samples. We did not use a development data set because we found
that the model performance is nearly independent of the hyperpara-
meters, once the number of trees ≥ 15 and the maximum depth of trees ≥
15, as demonstrated by the grid search hyperparameter optimization in
Fig. S2. Thus, we set the number of trees to 20 and the maximum depth of
trees to 20 in all RF training.
To generate Fig. 3, we obtained sentence topics with probability > 0.05

in our annotated data set of paragraphs, and counted the topic pairs in

Table 2. List of topics relevant to solid-state, hydrothermal and sol–gel synthesis procedures

Assigned topic name Cluster of keywords

Annealing °C, h, min, air, annealed, samples, atmosphere, films, heat, treatment, annealing, furnace, treated, temperatures, temperature

Aqueous mixing-1 g, mL, water, solution, ml, dissolved, added, stirring, distilled, deionized, typical, M, mixed, ethanol, aqueous

Autoclaving °C, autoclave, h, Teflon, lined, stainless, steel, transferred, microwave, heated, mixture, mL, solution, sealed, min

(ball-)milling Ball, milling, h, milled, powder, mill, powders, balls, mixed, rpm, planetary, ratio, speed, zirconia, steel

Centrifuging Water, washed, times, distilled, remove, ethanol, deionized, solution, dried, filtered, centrifugation, precipitate, three, collected,
washing

Cooling-2 °C, min, temperature, rate, heating, h, heated, room, samples, cooling, furnace, cooled, K, Cmin-1, sample

(hot-)pelletizing mm, pressed, diameter, powder, pressure, powders, pellets, pressing, hot, die, thickness, sintered, press, sintering, samples

Mixing Materials, mixed, purity, starting, powders, stoichiometric, prepared, grade, mortar, amounts, raw, ratio, high, powder,
composition

pH adjustment pH, solution, M, NaOH, adjusted, solutions, buffer, HCl, acid, prepared, aqueous, sodium, phosphate, concentration, added

Reaction start Prepared, method, solid, state, reaction, synthesized, x, samples, powders, conventional, gel, doped, sol, powder, synthesis

Sintering °C, h, air, calcined, dried, K, powder, obtained, heated, powders, sintered, finally, samples, furnace, atmosphere

Sol formation Acid, solution, ratio, added, glycol, water, citric, TEOS, molar, ethylene, prepared, agent, sol, ethanol, titanium

Solution heating °C, h, mixture, stirred, reaction, heated, temperature, solution, min, stirring, bath, water, room, cooled, oil

By interpreting the keywords, we assigned a label of experimental steps to each topic. Topics labeled with “*−1/*−2” such as “aqueous mixing-1” and “cooling-
2” are merely labeled with the same name but are learned as two independent topics. The complete list can be found in Table S1
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adjacent sentences, such as “mixing→ sintering”. By collecting all topic
pairs, we can compute the probability that one topic pair follows another.
This allows us to order a collection of topics into a Markov chain, which can
be visualized using a directed graph, where each node is a topic and each
edge is a topic pair. We weighted the edges by normalized frequencies of
topic pairs observed in paragraphs. Edges with lower occurrence
frequencies were plotted with a more transparent stroke in Fig. 3, and
edges with occurrence frequencies lower than 0.3 were removed from the
figure.
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