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Importance of High lonic Conductivity

All Solid-State Battery
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Low resistance of the separator (membrane)

Reduce amount of conductor in the composite cathode. Solid
electrolyte has high density as compared to liquid electrolyte,
therefore want to reduce its amount

Limits maximum stress concentration in the solid electrolyte
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Potential increase at crack tip pushes current away (screening !)

L. Barroso-Luque. Q. Tu, G. Ceder. 2020 J. Electrochem. Soc. 167 020534



Two principles for creating high ion conductivity

1. Keep energy landscape as flat as possible N vl M

2. Increase energy of the carrier \ |



Sulfides and Oxides are Different

SZ- 184pm
Sulfides: Li+ is myopic

 High screening power of S
« Large cation-cation distance

* anion coordination sets Li* energy
RS >

anion coordination is key

SZ is large and has high screening power

0Z 140pm
Oxides: cation-cation interaction

* Lower screening by anion cation interaction is key
« Shorter cation-cation distances
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“Flat” energy landscapes: Sulfides

SZ- 184pm

Limit coordination changes along the ion migration
path

Sgreen the Co.ulomb mtgrachons bgtween cations by S is large and has high
using large anions: sulfides, selenides screening power

Zigin Rong et al. Chemistry of Materials 27 (17), 6016-6021, DOI: 10.1021/acs.chemmater.5b02342 (2015

Y. Wang et al. Nature Materials, 14 (10), 1026-1031 (2015).



Sulfides: BCC packing of S? packing provides continuous pathway
with low coordination change
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Many known good sulfide-based Li-ion
conductors indeed have BCC framework

Y. Wang et al. Nature Materials, 14 (10), 1026-1031 (2015).



Find new Sulfide conductors with the BCC feature
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Oxides: Raise energy of Li-ion to increase its mobility

« Binding energy of Li = 3-4eV.
» But lowering barrier by 50meV raises o by factor 10
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1) Cation-cation interaction
2) Site distortion

1. Activated Networks (Stuffed): Y. Xiao et al, Adv. Energy Mater. 2101437, DOI: 10.1002/aenm.202101437 (2021)
2. Corner-Sharing Networks: Jun, KJ, Sun, Y, Ceder, G. et al., Nature Materials (2022)



Strategy 1: Stuffed Conductors

1. Activated Networks (Stuffed): Y. Xiao et al, Adv. Energy Mater. 2101437, DOI: 10.1002/aenm.202101437 (2021)



Li diffusion network is a network of face-sharing Li sites

LisLa;Te,04, (Garnet) Network: 2D representation
. = = 2 E.>1eV
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Network
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Li diffusion network is a network of face-sharing Li sites

Network
construction

@ Occupied Li site
O Unoccupied Li site

I—i1+xA|xTi2-x(Po4)3

QO stuffed Li

Activated
local env.
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High-throughput search for these features

Find all possible Li Analyze the connectivity of b e f
sites using occupied and unoccupied sites a. O c g .,O\.a’
Delaunay ‘ > L) ®
tetrahedralization o
@ Occupied site Q Unoccupied site
max gap min gap
Two regimes of interest

Garnet regime: NASICON regime:

1. percolation dimensionality = 3 1. percolation dimensionality = 3

2. max gap size < 4 A along the transport 2. 4 A < min gap size = max gap size <7

path in the pristine Li diffusion A along the transport path in the

network. pristine Li diffusion network.

— All Li-Li distance < 4 A: stuffed Li* will be close enough to occupied Li* to get energy raising (activation)
— All Li-Li distances are the same: homogenous transport path so activation can propagate without getting trapped.

Y. Xiao et al, Adv. Energy Mater. 2101437, DOI: 10.1002/aenm.202101437 (2021)



Min-Max gap plot and two regimes of interest

Min and max gap sizes for 4,666 compounds
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Multiple candidates from High-throughput search

ORT Edefect above hull
Target composition (m Slcm) E. (meV) (eVidefect) | (meViatom)

Liz+1/16ND1/16 T€1-1/1604 0. 25 30] 214 £ 39
G;;’I‘eet LicslSOe, . :Oc o 85?%_ ;. 262859 058 55
LiSeREieD O, 1 o 137"2 cop’ 199%73 [ 073 13.9
LiGa(SeOs), o 8%?13_ o 316%70 N/A 0
NASICON Li1+14Mg1/4SC1_14 (SeO3), [0.0;, 22] 245 £ 77 0 0
Rl (i, Mg, ,Gas 1,Si;0.,Cl [0_8;17,21 y 271£70 079 16.8
Liz.1Mgi/SC1_18(BO3); [0_03'3’72_2] 32688  0.72 7.4 Ao found by e, . and Mo,

Y. Xiao et al, Adv. Energy Mater. 2101437, DOI: 10.1002/aenm.202101437 (2021)



Strategy 2: Corner-sharing frameworks

Jun, KJt, Sun, Y, Ceder, G. et al. Lithium Superionic Conductors with
Corner-sharing Frameworks, Nature Materials (2022)



Corner-sharing frameworks

1. More distorted lithium environment

Framework with only corner-
sharing connectivity
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Two Benefits

2. Lower density of non-Li cations

_ Corner-sharing

Non-Corner-sharing
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Corner-sharing frameworks have more distorted sites

Continuous symmetry measure (CSM)

An index of distortion
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Discovery of > 10 novel superionic conductors

+ rediscovery of 12 known fast Li-ion conductors

Target 0300 K E. Target Enu Eq
composition (mS/cm) (eV) (eV/atom) (eV/defect)
Liln(10), 557 909) 0.155 + 0.040 0.0 N/A
LiScAs,0-, T 0.177 +0.042 0.021 0.64
LisB(SO,). o 0.330 + 0.061 0.023 1,56
Li;B(PO,), 0oor Sgy | 032640078 0.028 1,63
Li,B;POg 000ver 8aqy  0:269%0.087 0.015 167 Only an initial
LiZnBO, o 255 0.220 £ 0.101 0.009 0.12  Screening...
Li5In(BO3), B ooor 5.3 0.300 + 0.094 0.009 050 1o superionic
LiGa(Se0s), 00is L5 0.320  0.070 0.0 NA  conductors out there!
LiTiPOs 0,008 29.7) 0.212 £ 0.071 0.019 0.79
LioMgo(SO4)s 0195 820) 0.232 + 0.073 0.011 0.81

Jun, KJt, Sun, Y1, Ceder, G. et al., Nature Materials (2022)



Experimental verification

Notoriously difficult with new materials due to challenges sintering dense pellets, minimizing boundary resistance, etc.

LiGa(SeOs;), — A superionic conductor predicted by both features!

» Synthesized by solid-state method
» Spark-plasma sintering at 300°C (160 Mpa) to 76% relative density
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Other concepts put forward in literature

cooperative correlated
motion motion

concerted
motion

When anion polyhedral are present:

Cogwheel
effect

Paddle- Revolving door
wheel effect mechanism

22



Investigation of a possible paddlewheel effect

* Investigated B-LPS and agyrodite-like LisPS,(BH,),
« Ab initio molecular dynamics simulations
« Carefully track when Li hops and when polyanion group

rotates and investigate time and spatial correlation



Is there a paddle-wheel effect ?

Claim is that polyhedron rotation facilitates faster Li-ion diffusion

But never precisely defined in the literature

HT-Li,SO, phase

Experimental and theoretical evidence is vague and of a “correlative nature” : e.g. quasi-elastic
neutron scattering (QENS), NMR showing fast polyhedral reorientation at high temperature

v

Zhang, Z. et al. Targeting Superionic Conductivity by Turning on Anion Rotation at Room Temperature in Fast lon Conductors. Matter 2, 1667-1684 (2020).




Li;PS,(BH,), : No Correlation between Li diffusion and BH, motion
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For either rotation mode or stretch mode, the maximum correlation coefficient observed is less
than 0.2, and most of the coefficients are smaller than 0.1, which means Li diffusion is not
correlated to BH, rotation/stretch. Therefore, the enhanced conductivity in this material is

not related to any “paddle-wheel” mechanism.

Y. Sun, GC et al. Matter (2022), DOI: 10.1016/j.matt.2022.08.029 (2022) 26
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Summary

High ion conductivity is achieved by keeping the energy landscape flat through control of
coordination changes along the path, or by raising the energy of the moving ion.

Sulfides: Because of the large size and high screening power of S% Li+ is short-sighted in
sulfides. Low energy path is mostly about optimizing coordination changes. E.g. BCC
principles

Oxides: cation-cation interaction is more important and leads to more complex relations
between structure and ionic conductivity. Activated Diffusion Networks and Corner-
sharing frameworks are two criteria by which to search for high ionic conductivity
structures (but there may be others)

There are many Li-ion conductors out there !

No theoretical evidence so far for a paddle-wheel effect





